Примерная программа по предмету физика. Документ "примерные программы по физике". Физика и физические методы изучения природы

О преподавании физики в 2008-09 уч. году (с приложениями) стр. 4 из 21

Приложение 1

Примерные программы по физике

ПРИМЕРНАЯ ПРОГРАММА ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ по физике

VII - IX классы

Пояснительная записка

Статус документа

Примерная программа по физике составлена на основе федерального компонента государственного стандарта основного общего образования.

Примерная программа конкретизирует содержание предметных тем образовательного стандарта, дает примерное распределение учебных часов по разделам курса и рекомендуемую последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, определяет минимальный набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых учащимися.

Примерная программа является ориентиром для составления авторских учебных программ и учебников , а также может использоваться при тематическом планировании курса учителем.

В них может быть более детально раскрыто содержание изучаемого материала, а также пути формирования системы знаний, умений и способов деятельности, развития и социализации учащихся.

Таким образом, примерная программа содействует сохранению единого образовательного пространства, не сковывая творческой инициативы учителей, предоставляет широкие возможности для реализации различных подходов к построению учебного курса.

Структура документа

Примерная программа по физике включает три раздела: пояснительную записку; основное содержание с примерным распределением учебных часов по разделам курса, рекомендуемую последовательность изучения тем и разделов;

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и физические методы изучения природы».

научным методом познания , .

Курс физики в примерной программе основного общего образования структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения: механические явления, тепловые явления, электромагнитные явления, квантовые явления. Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.

Цели изучения физики

Изучение физики в образовательных учреждениях основного общего образования направлено на достижение следующих целей:

    освоение знаний о механических, тепловых, электромагнитных и квантовых явлениях; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;

    овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;

    развитие познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;

    воспитание убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;

    применение полученных знаний и умений для решения практических задач повседневной жизни, для обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды.

210 часов для обязательного изучения физики на ступени основного общего образования. В том числе в VII, VIII и IX классах по 70 учебных часов из расчета 2 учебных часа в неделю. В примерной программе предусмотрен резерв свободного учебного времени в объеме 21 час (10%) для реализации авторских подходов, использования разнообразных форм организации учебного процесса, внедрения современных методов обучения и педагогических технологий, учета местных условий.

Познавательная деятельность:

Рефлексивная деятельность:

Результаты обучения

Рубрика «Знать/понимать» включает требования к учебному материалу, который усваивается и воспроизводится учащимися. Выпускники должны понимать смысл изучаемых физических понятий и законов.

Рубрика «Уметь» включает требования, основанных на более сложных видах деятельности, в том числе творческой: объяснять физические явления, представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости, решать задачи на применение изученных физических законов, приводить примеры практического использования полученных знаний, осуществлять самостоятельный поиск учебной информации.

Основное содержание (210 час)

Физика и физические методы изучения природы (6 час)

Физика - наука о природе. Наблюдение и описание физических явлений. Физические приборы. Физические величины и их измерение. Погрешности измерений. Международная система единиц. Физический эксперимент и физическая теория. Физические модели . Роль математики в развитии физики. Физика и техника. Физика и развитие представлений о материальном мире.

Демонстрации

    Примеры механических, тепловых, электрических, магнитных и световых явлений.

    Физические приборы.

Лабораторные работы и опыты

    Определение цены деления шкалы измерительного прибора. 1

    Измерение длины.

    Измерение объема жидкости и твердого тела.

    Измерение температуры.

Механические явления (57 час)

Механическое движение. Относительность движения. Система отсчета. Траектория. Путь. Прямолинейное равномерное движение. Скорость равномерного прямолинейного движения. Методы измерения расстояния, времени и скорости.

Неравномерное движение. Мгновенная скорость. Ускорение. Равноускоренное движение. Свободное падение тел. Графики зависимости пути и скорости от времени.

Равномерное движение по окружности. Период и частота обращения.

Явление инерции. Первый закон Ньютона. Масса тела. Плотность вещества. Методы измерения массы и плотности.

Взаимодействие тел. Сила. Правило сложения сил.

Сила упругости. Методы измерения силы.

Второй закон Ньютона. Третий закон Ньютона.

Сила тяжести. Закон всемирного тяготения. Искусственные спутники Земли. Вес тела. Невесомость. Геоцентрическая и гелиоцентрическая системы мира.

Сила трения.

Момент силы. Условия равновесия рычага. Центр тяжести тела. Условия равновесия тел.

Импульс. Закон сохранения импульса. Реактивное движение.

Работа. Мощность. Кинетическая энергия. Потенциальная энергия взаимодействующих тел. Закон сохранения механической энергии. Простые механизмы. Коэффициент полезного действия. Методы измерения энергии, работы и мощности.

Давление. Атмосферное давление. Методы измерения давления. Закон Паскаля. Гидравлические машины . Закон Архимеда. Условие плавания тел.

Механические колебания. Период, частота и амплитуда колебаний. Период колебаний математического и пружинного маятников.

Механические волны. Длина волны . Звук.

Демонстрации

    Равномерное прямолинейное движение.

    Относительность движения.

    Равноускоренное движение.

    Свободное падение тел в трубке Ньютона.

    Направление скорости при равномерном движении по окружности.

    Явление инерции.

    Взаимодействие тел.

    Зависимость силы упругости от деформации пружины.

    Сложение сил.

    Сила трения.

    Второй закон Ньютона.

    Третий закон Ньютона.

    Невесомость.

    Закон сохранения импульса.

    Реактивное движение.

    Изменение энергии тела при совершении работы.

    Превращения механической энергии из одной формы в другую.

    Зависимость давления твердого тела на опору от действующей силы и площади опоры.

    Обнаружение атмосферного давления.

    Измерение атмосферного давления барометром - анероидом.

    Закон Паскаля.

    Гидравлический пресс.

    Закон Архимеда.

    Простые механизмы.

    Механические колебания.

    Механические волны.

    Звуковые колебания.

    Условия распространения звука.

Лабораторные работы и опыты

    Измерение скорости равномерного движения.

    Изучение зависимости пути от времени при равномерном иравноускоренном движении

    Измерение ускорения прямолинейного равноускоренного движения.

    Измерение массы.

    Измерение плотности твердого тела.

    Измерение плотности жидкости.

    Измерение силы динамометром.

    Сложение сил, направленных вдоль одной прямой.

    Сложение сил, направленных под углом.

    Исследование зависимости силы тяжести от массы тела.

    Исследование зависимости силы упругости от удлинения пружины. Измерение жесткости пружины.

    Исследование силы трения скольжения. Измерение коэффициента трения скольжения.

    Исследование условий равновесия рычага.

    Нахождение центра тяжести плоского тела.

    Вычисление КПД наклонной плоскости.

    Измерение кинетической энергии тела.

    Измерение изменения потенциальной энергии тела.

    Измерение мощности.

    Измерение архимедовой силы.

    Изучение условий плавания тел.

    Изучение зависимости периода колебаний маятника от длины нити.

    Измерение ускорения свободного падения с помощью маятника.

    Изучение зависимости периода колебаний груза на пружине от массы груза.

Тепловые явления (33 час)

Строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия. Взаимодействие частиц вещества. Модели строения газов, жидкостей и твердых тел и объяснение свойств вещества на основе этих моделей.

Тепловое движение. Тепловое равновесие. Температура и ее измерение. Связь температуры со средней скоростью теплового хаотического движения частиц.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Виды теплопередачи: теплопроводность, конвекция, излучение. Количество теплоты. Удельная теплоемкость. Закон сохранения энергии в тепловых процессах. Необратимость процессов теплопередачи.

Испарение и конденсация. Насыщенный пар. Влажность воздуха. Кипение. Зависимость температуры кипения от давления. Плавление и кристаллизация. Удельная теплота плавления и парообразования. Удельная теплота сгорания. Расчет количества теплоты при теплообмене.

Принципы работы тепловых двигателей. Паровая турбина. Двигатель внутреннего сгорания. Реактивный двигатель. КПД теплового двигателя. Объяснение устройства и принципа действия холодильника.

Преобразования энергии в тепловых машинах. Экологические проблемы использования тепловых машин.

Демонстрации

Сжимаемость газов.

    Диффузия в газах и жидкостях.

    Модель хаотического движения молекул.

    Модель броуновского движения.

    Сохранение объема жидкости при изменении формы сосуда.

    Сцепление свинцовых цилиндров.

    Принцип действия термометра.

    Изменение внутренней энергии тела при совершении работы и при теплопередаче.

    Теплопроводность различных материалов.

    Конвекция в жидкостях и газах.

    Теплопередача путем излучения.

    Сравнение удельных теплоемкостей различных веществ.

    Явление испарения.

    Кипение воды.

    Постоянство температуры кипения жидкости.

    Явления плавления и кристаллизации.

    Измерение влажности воздуха психрометром или гигрометром.

    Устройство четырехтактного двигателя внутреннего сгорания.

    Устройство паровой турбины

Лабораторные работы и опыты

    Исследование изменения со временем температуры остывающей воды.

    Изучение явления теплообмена.

    Измерение удельной теплоемкости вещества.

    Измерение влажности воздуха.

    Исследование зависимости объема газа от давления при постоянной температуре.

Электрические и магнитные явления (30 час)

Электризация тел. Электрический заряд. Два вида электрических зарядов. Взаимодействие зарядов. Закон сохранения электрического заряда.

Электрическое поле. Действие электрического поля на электрические заряды. Проводники, диэлектрики и полупроводники. Конденсатор. Энергия электрического поля конденсатора.

Постоянный электрический ток. Источники постоянного тока. Действия электрического тока. Сила тока. Напряжение. Электрическое сопротивление. Электрическая цепь. Закон Ома для участка электрической цепи. Последовательное и параллельное соединения проводников . Работа и мощность электрического тока. Закон Джоуля-Ленца. Носители электрических зарядов в металлах, полупроводниках, электролитах и газах. Полупроводниковые приборы.

Опыт Эрстеда. Магнитное поле тока. Взаимодействие постоянных магнитов. Магнитное поле Земли. Электромагнит . Сила Ампера. Электродвигатель . Электромагнитное реле.

Демонстрации

    Электризация тел.

    Два рода электрических зарядов.

    Устройство и действие электроскопа.

    Проводники и изоляторы.

    Электризация через влияние

    Перенос электрического заряда с одного тела на другое

    Закон сохранения электрического заряда.

    Устройство конденсатора.

    Источники постоянного тока.

    Составление электрической цепи.

    Электрический ток в электролитах. Электролиз.

    Электрический ток в полупроводниках. Электрические свойства полупроводников.

    Электрический разряд в газах.

    Измерение силы тока амперметром.

    Наблюдение постоянства силы тока на разных участках неразветвленной электрической цепи.

    Измерение силы тока в разветвленной электрической цепи.

    Измерение напряжения вольтметром.

    Реостат и магазин сопротивлений.

    Измерение напряжений в последовательной электрической цепи.

    Зависимость силы тока от напряжения на участке электрической цепи.

    Опыт Эрстеда.

    Магнитное поле тока.

    Действие магнитного поля на проводник с током.

    Устройство электродвигателя.

Лабораторные работы и опыты

    Наблюдение электрического взаимодействия тел

    Сборка электрической цепи и измерение силы тока и напряжения.

    Исследование зависимости силы тока в проводнике от напряжения на его концах при постоянном сопротивлении.

    Исследование зависимости силы тока в электрической цепи от сопротивления при постоянном напряжении.

    Изучение последовательного соединения проводников

    Изучение параллельного соединения проводников

    Измерение сопротивление при помощи амперметра и вольтметра.

    Изучение зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала. Удельное сопротивление.

    Измерение работы и мощности электрического тока.

    Изучение электрических свойств жидкостей.

    Изготовление гальванического элемента.

    Изучение взаимодействия постоянных магнитов.

    Исследование магнитного поля прямого проводника и катушки с током.

    Исследование явления намагничивания железа.

    Изучение принципа действия электромагнитного реле.

    Изучение действия магнитного поля на проводник с током.

    Изучение принципа действия электродвигателя.

Электромагнитные колебания и волны (40 час)

Электромагнитная индукция. Опыты Фарадея. Правило Ленца. Самоиндукция. Электрогенератор.

Переменный ток. Трансформатор. Передача электрической энергии на расстояние.

Колебательный контур. Электромагнитные колебания. Электромагнитные волны и их свойства. Скорость распространения электромагнитных волн.

Свет - электромагнитная волна . Дисперсия света. Влияние электромагнитных излучений на живые организмы.

Прямолинейное распространение света. Отражение и преломление света. Закон отражения света. Плоское зеркало. Линза. Фокусное расстояние линзы. Формула линзы. Оптическая сила линзы. Глаз как оптическая система. Оптические приборы.

Демонстрации

    Электромагнитная индукция.

    Правило Ленца.

    Самоиндукция.

    Получение переменного тока при вращении витка в магнитном поле.

    Устройство генератора постоянного тока.

    Устройство генератора переменного тока.

    Устройство трансформатора.

    Передача электрической энергии.

    Электромагнитные колебания.

    Свойства электромагнитных волн.

    Принцип действия микрофона и громкоговорителя.

    Принципы радиосвязи.

    Источники света.

    Прямолинейное распространение света.

    Закон отражения света.

    Изображение в плоском зеркале.

    Преломление света.

    Ход лучей в собирающей линзе.

    Ход лучей в рассеивающей линзе.

    Получение изображений с помощью линз.

    Принцип действия проекционного аппарата и фотоаппарата.

    Модель глаза.

    Дисперсия белого света.

    Получение белого света при сложении света разных цветов.

Лабораторные работы и опыты

    Изучение явления электромагнитной индукции.

    Изучение принципа действия трансформатора.

    Изучение явления распространения света.

    Исследование зависимости угла отражения от угла падения света.

    Изучение свойств изображения в плоском зеркале.

    Исследование зависимости угла преломления от угла падения света.

    Измерение фокусного расстояния собирающей линзы.

    Получение изображений с помощью собирающей линзы.

    Наблюдение явления дисперсии света.

Квантовые явления (23 час)

Опыты Резерфорда. Планетарная модель атома. Линейчатые оптические спектры. Поглощение и испускание света атомами.

Состав атомного ядра. Зарядовое и массовое числа .

Ядерные силы. Энергия связи атомных ядер. Радиоактивность. Альфа-, бета- и гамма-излучения. Период полураспада . Методы регистрации ядерных излучений.

Ядерные реакции. Деление и синтез ядер. Источники энергии Солнца и звезд. Ядерная энергетика.

Дозиметрия. Влияние радиоактивных излучений на живые организмы. Экологические проблемы работы атомных электростанций.

Демонстрации

    Модель опыта Резерфорда.

    Наблюдение треков частиц в камере Вильсона.

    Устройство и действие счетчика ионизирующих частиц.

Лабораторные работы и опыты

    Наблюдение линейчатых спектров излучения.

    Измерение естественного радиоактивного фона дозиметром.

Резерв свободного учебного времени (21 час)

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ ОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЙ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО ФИЗИКЕ

В результате изучения физики ученик должен

знать/понимать

    смысл понятий: физическое явление, физический закон, вещество, взаимодействие, электрическое поле, магнитное поле, волна, атом, атомное ядро, ионизирующие излучения;

    смысл физических величин: путь, скорость, ускорение, масса, плотность, сила, давление, импульс, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия, внутренняя энергия, температура, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, фокусное расстояние линзы;

    смысл физических законов: Паскаля, Архимеда, Ньютона, всемирного тяготения, сохранения импульса и механической энергии, сохранения энергии в тепловых процессах, сохранения электрического заряда, Ома для участка электрической цепи, Джоуля-Ленца, прямолинейного распространения света, отражения света;

уметь

    описывать и объяснять физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, передачу давления жидкостями и газами, плавание тел, механические колебания и волны, диффузию, теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, электромагнитную индукцию, отражение, преломление и дисперсию света;

    использовать физические приборы и измерительные инструменты для измерения физических величин: расстояния, промежутка времени, массы, силы, давления, температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электрического тока;

    представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: пути от времени, силы упругости от удлинения пружины, силы трения от силы нормального давления, периода колебаний маятника от длины нити, периода колебаний груза на пружине от массы груза и от жесткости пружины, температуры остывающего тела от времени, силы тока от напряжения на участке цепи, угла отражения от угла падения света, угла преломления от угла падения света;

    выражать результаты измерений и расчетов в единицах Международной системы;

    приводить примеры практического использования физических знаний о механических, тепловых, электромагнитных и квантовых явлениях;

    решать задачи на применение изученных физических законов ;

    осуществлять самостоятельный поиск инфор мации естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);

    обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники;

    контроля за исправностью электропроводки, водопровода, сантехники и газовых приборов в квартире;

    рационального применения простых механизмов;

    оценки безопасности радиационного фона.

Письмо Департамента государственной политики в образовании

Министерства образования и науки России от 07.07.2005 № 03-1263

ПРИМЕРНАЯ ПРОГРАММА СРЕДНЕГО (ПОЛНОГО) ОБЩЕГО ОБРАЗОВАНИЯ ПО ФИЗИКЕ

БАЗОВЫЙ УРОВЕНЬ

X - XI классы

Пояснительная записка

Статус документа

Примерная программа по физике составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования.

Примерная программа

    конкретизирует содержание предметных тем образовательного стандарта на базовом уровне;

    дает примерное распределение учебных часов по разделам курса и рекомендуемую последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся;

    определяет минимальный набор опытов, демонстрируемых учителем в классе,

    лабораторных и практических работ, выполняемых учащимися.

Примерная программа является ориентиром для составления авторских учебных программ и учебников, а также может использоваться при тематическом планировании курса учителем .

    последовательностью изучения тем ,

    перечнем демонстрационных опытов и

    фронтальных лабораторных работ.

Структура документа

Примерная программа по физике включает три раздела:

    требования к уровню подготовки выпускников.

Общая характеристика учебного предмета

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования

основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и методы научного познания»

Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания , позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики в примерной программе среднего (полного) общего образования структурируется на основе физических теорий: механика, молекулярная физика, электродинамика, электромагнитные колебания и волны, квантовая физика.

Особенностью предмета физика в учебном плане образовательной школы является и тот факт, что овладение основными физическими понятиями и законами на базовом уровне стало необходимым практически каждому человеку в современной жизни.

Цели изучения физики

Изучение физики в средних (полных) образовательных учреждениях на базовом уровне направлено на достижение следующих целей:

    освоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;

    овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний; оценивать достоверность естественнонаучной информации;

    развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;

    воспитание убежденности в возможности познания законов природы; использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;

    для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, рационального природопользования и охраны окружающей среды.

Место предмета в учебном плане

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 140 часов для обязательного изучения физики на базовом уровне ступени среднего (полного) общего образования. В том числе в X и XI классах по 70 учебных часов из расчета 2 учебных часа в неделю.

В примерных программах предусмотрен резерв свободного учебного времени в объеме 14 учебных часов для реализации авторских подходов, использования разнообразных форм организации учебного процесса, внедрения современных методов обучения и педагогических технологий, учета местных условий.

Общеучебные умения, навыки и способы деятельности

Примерная программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе основного общего образования являются:

Познавательная деятельность:

    использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;

    формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;

    овладение адекватными способами решения теоретических и экспериментальных задач;

    приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.

Информационно-коммуникативная деятельность:

      владение монологической и диалогической речью. Способность понимать точку зрения собеседника и признавать право на иное мнение;

      использование для решения познавательных и коммуникативных задач различных источников информации.

Рефлексивная деятельность:

    владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:

    организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

Результаты обучения

Обязательные результаты изучения курса «Физика» приведены в разделе «Требования к уровню подготовки выпускников», который полностью соответствует стандарту. Требования направлены на реализацию деятельностного и личностно ориентированного подходов; освоение учащимися интеллектуальной и практической деятельности; овладение знаниями и умениями, необходимыми в повседневной жизни, позволяющими ориентироваться в окружающем мире, значимыми для сохранения окружающей среды и собственного здоровья.

Рубрика «Знать/понимать» включает требования к учебному материалу, который усваивается и воспроизводится учащимися. Выпускники должны понимать смысл изучаемых физических понятий, физических величин и законов.

Рубрика «Уметь» включает требования, основанных на более сложных видах деятельности, в том числе творческой: описывать и объяснять физические явления и свойства тел, отличать гипотезы от научных теорий, делать выводы на основании экспериментальных данных, приводить примеры практического использования полученных знаний, воспринимать и самостоятельно оценивать информацию, содержащуюся в СМИ, Интернете, научно-популярных статьях.

В рубрике «Использовать приобретенные знания и умения в практической деятельности и повседневной жизни» представлены требования, выходящие за рамки учебного процесса и нацеленные на решение разнообразных жизненных задач.

Основное содержание (140 час)

Физика и методы научного познания (4 час)

Физика – наука о природе. Научные методы познания окружающего мира и их отличия от других методов познания. Роль эксперимента и теории в процессе познания природы. Моделирование физических явлений и процессов. Научные гипотезы. Физические законы. Физические теории. Границы применимости физических законов и теорий. Принцип соответствия . Основные элементы физической картины мира.

Механика (32 час)

Механическое движение и его виды. Относительность механического движения. Прямолинейное равноускоренное движение. Принцип относительности Галилея. Законы динамики. Всемирное тяготение. Законы сохранения в механике. Предсказательная сила законов классической механики. Использование законов механики для объяснения движения небесных тел и для развития космических исследований. Границы применимости классической механики.

Демонстрации

    Зависимость траектории от выбора системы отсчета.

    Явление инерции.

    Второй закон Ньютона.

    Измерение сил.

    Сложение сил.

    Силы трения.

    Условия равновесия тел.

    Реактивное движение.

Лабораторные работы

Молекулярная физика (27 час)

Возникновение атомистической гипотезы строения вещества и ее экспериментальные доказательства. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа . Давление газа. Уравнение состояния идеального газа. Строение и свойства жидкостей и твердых тел.

Законы термодинамики. Порядок и хаос. Необратимость тепловых процессов . Тепловые двигатели и охрана окружающей среды.

Демонстрации

    Устройство психрометра и гигрометра.

    Модели тепловых двигателей.

Лабораторные работы

    Измерение влажности воздуха.

    Измерение поверхностного натяжения жидкости.

Электродинамика (35 час)

Элементарный электрический заряд. Закон сохранения электрического заряда. Электрическое поле. Электрический ток. Закон Ома для полной цепи. Магнитное поле тока. Плазма. Действие магнитного поля на движущиеся заряженные частицы. Явление электромагнитной индукции. Взаимосвязь электрического и магнитного полей. Электромагнитное поле.

Электромагнитные волны. Волновые свойства света. Различные виды электромагнитных излучений и их практические применения.

Законы распространения света. Оптические приборы.

Демонстрации

    Электрометр.

    Энергия заряженного конденсатора.

    Электроизмерительные приборы.

    Магнитная запись звука.

    Свободные электромагнитные колебания.

    Генератор переменного тока.

    Интерференция света.

    Дифракция света.

    Поляризация света.

    Прямолинейное распространение, отражение и преломление света.

    Оптические приборы

Лабораторные работы

    Измерение элементарного заряда.

    Измерение магнитной индукции.

    Определение спектральных границ чувствительности человеческого глаза.

Квантовая физика и элементы астрофизики (28 час)

Гипотеза Планка о квантах. Фотоэффект. Фотон. Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм.

Планетарная модель атома. Квантовые постулаты Бора. Лазеры.

Строение атомного ядра. Ядерные силы. Дефект массы и энергия связи ядра. Ядерная энергетика. Влияние ионизирующей радиации на живые организмы. Доза излучения. Закон радиоактивного распада. Элементарные частицы. Фундаментальные взаимодействия.

Солнечная система. Звезды и источники их энергии. Галактика. Пространственные масштабы наблюдаемой Вселенной. Современные представления о происхождении и эволюции Солнца и звезд. Строение и эволюция Вселенной.

Демонстрации

    Фотоэффект.

    Линейчатые спектры излучения.

  1. Счетчик ионизирующих частиц.

Лабораторные работы

    Наблюдение линейчатых спектров.

Резерв свободного учебного времени (14 час)

ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения физики на базовом уровне ученик должен

знать/понимать

    смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;

    смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

    смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;

уметь

    описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;

    отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;

    приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;

    информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

    обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи.;

    оценки влияния на организм человека и другие организмы загрязнения окружающей среды;

    рационального природопользования и защиты окружающей среды.

Письмо Департамента государственной политики в образовании

Министерства образования и науки России от 07.07.2005 № 03-1263

ПРИМЕРНАЯ ПРОГРАММА среднего (полного) ОБЩЕГО ОБРАЗОВАНИЯ по физике

ПРОФИЛЬНЫЙ УРОВЕНЬ

X - XI классы

Пояснительная записка

Статус документа

Примерная программа по физике на профильном уровне составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования.

Примерная программа конкретизирует содержание предметных тем образовательного стандарта на профильном уровне, дает примерное распределение учебных часов по разделам курса и рекомендуемую последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, определяет минимальный набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых учащимися.

Примерная программа является ориентиром для составления авторских учебных программ и учебников, а также может использоваться при тематическом планировании курса учителем.

    последовательностью изучения тем,

    перечнем демонстрационных опытов и

    фронтальных лабораторных работ.

В них может быть более детально раскрыто содержание изучаемого материала, а также пути формирования системы знаний, умений и способов деятельности, развития и социализации учащихся. Таким образом, примерная программа содействует сохранению единого образовательного пространства, не сковывая творческой инициативы учителей, предоставляет широкие возможности для реализации различных подходов к построению учебного курса.

Структура документа

Примерная программа по физике включает три раздела :

    пояснительную записку;

    требования к уровню подготовки выпускников.

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела « Физика как наука. Методы научного познания природы».

Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания , позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики в примерной программе среднего (полного) общего образования структурируется на основе физических теорий:

    механика,

    молекулярная физика,

    электродинамика,

    электромагнитные колебания и волны,

    квантовая физика.

Изучение физики в образовательных учреждениях среднего (полного) общего образования направлено на достижение следующих целей:

    освоение знаний о методах научного познания природы; современной физической картине мира: свойствах вещества и поля, пространственно-временных закономерностях, динамических и статистических законах природы, элементарных частицах и фундаментальных взаимодействиях, строении и эволюции Вселенной; знакомство с основами фундаментальных физических теорий: классической механики, молекулярно-кинетической теории, термодинамики, классической электродинамики, специальной теории относительности, квантовой теории;

    овладение умениями проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, выдвигать гипотезы и строить модели, устанавливать границы их применимости;

    применение знаний по физике для объяснения явлений природы, свойств вещества, принципов работы технических устройств, решения физических задач, самостоятельного приобретения и оценки достоверности новой информации физического содержания, использования современных информационных технологий для поиска, переработки и предъявления учебной и научно-популярной информации по физике;

    развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний, выполнения экспериментальных исследований, подготовки докладов, рефератов и других творческих работ;

    воспитание духа сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента, обоснованности высказываемой позиции, готовности к морально-этической оценке использования научных достижений, уважения к творцам науки и техники, обеспечивающимведущую роль физики в создании современного мира техники;

    использование приобретенных знаний и умений для решения практических, жизненных задач, рационального природопользования и защиты окружающей среды, обеспечения безопасности жизнедеятельности человека и общества.

Место предмета в учебном плане

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 350 часов для обязательного изучения физики на профильном уровне ступени среднего (полного) общего образования. В том числе в X и XI классах по 175 учебных часов из расчета 5 учебных часа в неделю.

В примерной программа предусмотрен резерв свободного учебного времени в объеме 35 час для реализации авторских подходов, использования разнообразных форм организации учебного процесса, внедрения современных методов обучения и педагогических технологий, учета местных условий.

Общеучебные умения, навыки и способы деятельности

Примерная программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. В этом направлении приоритетами для школьного курса физики на этапе основного общего образования являются:

Примерная программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе основного общего образования являются:

Познавательная деятельность:

    использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;

    формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;

    овладение адекватными способами решения теоретических и экспериментальных задач;

    приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.

Информационно-коммуникативная деятельность:

      владение монологической и диалогической речью, развитие способности понимать точку зрения собеседника и признавать право на иное мнение;

      использование для решения познавательных и коммуникативных задач различных источников информации.

Рефлексивная деятельность:

    владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:

    организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

Результаты обучения

Обязательные результаты изучения курса «Физика» приведены в разделе «Требования к уровню подготовки выпускников», который полностью соответствует стандарту. Требования направлены на реализацию деятельностного и личностно ориентированного подходов; освоение учащимися интеллектуальной и практической деятельности; овладение знаниями и умениями, необходимыми в повседневной жизни, позволяющими ориентироваться в окружающем мире, значимыми для сохранения окружающей среды и собственного здоровья.

Рубрика «Знать/понимать» включает требования к учебному материалу, который усваивается и воспроизводится учащимися. Выпускники должны понимать смысл изучаемых физических понятий, физических величин и законов, принципов и постулатов.

Рубрика «Уметь» включает требования, основанных на более сложных видах деятельности, в том числе творческой: объяснять результаты наблюдений и экспериментов, описывать фундаментальные опыты, оказавшие существенное влияние на развитие физики, представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости, применять полученные знания для решения физических задач, приводить примеры практического использования знаний, воспринимать и самостоятельно оценивать информацию.

В рубрике «Использовать приобретенные знания и умения в практической деятельности и повседневной жизни» представлены требования, выходящие за рамки учебного процесса и нацеленные на решение разнообразных жизненных задач.

Основное содержание (350 ч)

(5 часов в неделю)

Физика как наука. Методы научного познания природы. (6ч)

Физика – фундаментальная наука о природе.Научные методы познания окружающего мира. Роль эксперимента и теории в процессе познания природы. Моделирование явлений и объектов природы. Научные гипотезы. Роль математики в физике. Физические законы и теории, границы их применимости. Принцип соответствия. Физическая картина мира.

Механика (60 ч)

Механическое движение и его относительность. Способы описания механического движения. Материальная точка как пример физической модели. Перемещение, скорость, ускорение.

Уравнения прямолинейного равномерного и равноускоренного движения. Движение по окружности с постоянной по модулю скоростью. Центростремительное ускорение.

Принцип суперпозиции сил. Законы динамики Ньютона и границы их применимости. Инерциальные системы отсчета. Принцип относительности Галилея. Пространство и время в классической механике.

Силы тяжести, упругости, трения. Закон всемирного тяготения. Законы Кеплера. Вес и невесомость. Законы сохранения импульса и механической энергии. Использование законов механики для объяснения движения небесных тел и для развития космических исследований . Момент силы. Условия равновесия твердого тела.

Механические колебания. Амплитуда, период, частота, фаза колебаний. Уравнение гармонических колебаний. Свободные и вынужденные колебания. Резонанс. Автоколебания. Механические волны. Поперечные и продольные волны. Длина волны. Уравнение гармонической волны. Свойства механических волн: отражение, преломление, интерференция, дифракция. Звуковые волны.

Демонстрации

    Зависимость траектории движения тела от выбора системы отсчета.

    Падение тел в воздухе и в вакууме.

    Явление инерции.

    Инертность тел.

    Сравнение масс взаимодействующих тел.

    Второй закон Ньютона.

    Измерение сил.

    Сложение сил.

    Взаимодействие тел.

    Невесомость и перегрузка.

    Зависимость силы упругости от деформации.

    Силы трения.

    Виды равновесия тел.

    Условия равновесия тел.

    Реактивное движение.

    Изменение энергии тел при совершении работы.

    Переход потенциальной энергии в кинетическую и обратно.

    Свободные колебания груза на нити и на пружине.

    Запись колебательного движения.

    Вынужденные колебания.

    Резонанс.

    Автоколебания.

    Поперечные и продольные волны.

    Отражение и преломление волн.

    Дифракция и интерференция волн.

    Частота колебаний и высота тона звука.

Лабораторные работы

    Измерение ускорения свободного падения.

    Исследование движения тела под действием постоянной силы.

    Изучение движения тел по окружности под действием силы тяжести и упругости.

    Исследование упругого и неупругого столкновений тел.

    Сохранение механической энергии при движении тела под действием сил тяжести и упругости.

    Сравнение работы силы с изменением кинетической энергии тела.

Физический практикум (8 ч)

Молекулярная физика (34ч)

Атомистическая гипотеза строения вещества и ее экспериментальные доказательства. Модель идеального газа. Абсолютная температура. Температура как мера средней кинетической энергии теплового движения частиц. Связь между давлением идеального газа и средней кинетической энергией теплового движения его молекул.

Уравнение состояния идеального газа. Изопроцессы. Границы применимости модели идеального газа.

Модель строения жидкостей. Поверхностное натяжение . Насыщенные и ненасыщенные пары. Влажность воздуха.

Модель строения твердых тел. Механические свойства твердых тел. Дефекты кристаллической решетки. Изменения агрегатных состояний вещества.

Внутренняя энергия и способы ее изменения. Первый закон термодинамики. Расчет количества теплоты при изменении агрегатного состояния вещества. Адиабатный процесс. Второй закон термодинамики и его статистическое истолкование . Принципы действия тепловых машин. КПД тепловой машины. Проблемы энергетики и охрана окружающей среды.

Демонстрации

    Механическая модель броуновского движения.

    Модель опыта Штерна.

    Изменение давления газа с изменением температуры при постоянном объеме.

    Изменение объема газа с изменением температуры при постоянном давлении.

    Изменение объема газа с изменением давления при постоянной температуре.

    Кипение воды при пониженном давлении.

    Психрометр и гигрометр.

    Явление поверхностного натяжения жидкости.

    Кристаллические и аморфные тела.

    Объемные модели строения кристаллов.

    Модели дефектов кристаллических решеток.

    Изменение температуры воздуха при адиабатном сжатии и расширении.

    Модели тепловых двигателей.

Лабораторные работы

    Исследование зависимости объема газа от температуры при постоянном давлении.

    Наблюдение роста кристаллов из раствора.

    Измерение поверхностного натяжения.

    Измерение удельной теплоты плавления льда.

Физический практикум (6 ч)

Электростатика. Постоянный ток (38 ч)

Элементарный электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей. Потенциал электрического поля. Потенциальность электростатического поля. Разность потенциалов. Напряжение. Связь напряжения с напряженностью электрического поля.

Проводники в электрическом поле. Электрическая емкость. Конденсатор. Диэлектрики в электрическом поле. Энергия электрического поля.

Электрический ток. Последовательное и параллельное соединение проводников. Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, газах и вакууме. Закон электролиза. Плазма. Полупроводники. Собственная и примесная проводимости полупроводников. Полупроводниковый диод. Полупроводниковые приборы.

Демонстрации

    Электрометр.

    Проводники в электрическом поле.

    Диэлектрики в электрическом поле.

    Конденсаторы.

    Энергия заряженного конденсатора.

    Электроизмерительные приборы.

    Зависимость удельного сопротивления металлов от температуры.

    Зависимость удельного сопротивления полупроводников от температуры и освещения.

    Собственная и примесная проводимость полупроводников.

    Полупроводниковый диод.

    Транзистор.

    Термоэлектронная эмиссия.

    Электронно-лучевая трубка.

    Явление электролиза.

    Электрический разряд в газе.

    Люминесцентная лампа.

Лабораторные работы

    Измерение электрического сопротивления с помощью омметра.

    Измерение ЭДС и внутреннего сопротивления источника тока.

    Измерение элементарного электрического заряда.

    Измерение температуры нити лампы накаливания.

Физический практикум (6 ч)

Магнитное поле (20 ч)

Индукция магнитного поля. Принцип суперпозиции магнитных полей. Сила Ампера. Сила Лоренца. Электроизмерительные приборы. Магнитные свойства вещества.

Магнитный поток. Закон электромагнитной индукции Фарадея. Вихревое электрическое поле. Правило Ленца. Самоиндукция. Индуктивность. Энергия магнитного поля.

Демонстрации

    Магнитное взаимодействие токов.

    Отклонение электронного пучка магнитным полем.

    Магнитные свойства вещества.

    Магнитная запись звука.

    Зависимость ЭДС индукции от скорости изменения магнитного потока.

    Зависимость ЭДС самоиндукции от скорости изменения силы тока и индуктивности проводника.

Лабораторные работы

    Измерение магнитной индукции.

    Измерение индуктивности катушки.

Физический практикум (6 ч)

Электромагнитные колебания и волны (55 ч)

Колебательный контур. Свободные электромагнитные колебания. Вынужденные электромагнитные колебания. Переменный ток. Действующие значения силы тока и напряжения. Конденсатор и катушка в цепи переменного тока. Активное сопротивление. Электрический резонанс. Трансформатор . Производство, передача и потребление электрической энергии.

Электромагнитное поле. Вихревое электрическое поле. Скорость электромагнитных волн. Свойства электромагнитных волн. Принципы радиосвязи и телевидения.

Свет как электромагнитная волна. Скорость света. Интерференция света. Когерентность . Дифракция света. Дифракционная решетка. Поляризация света . Законы отражения и преломления света. Полное внутреннее отражение. Дисперсия света. Различные виды электромагнитных излучений, их свойства и практические применения. Формула тонкой линзы. Оптические приборы. Разрешающая способность оптических приборов .

Постулаты специальной теории относительности Эйнштейна. Пространство и время в специальной теории относительности. Полная энергия. Энергия покоя. Релятивистский импульс. Связь полной энергии с импульсом и массой тела . Дефект массы и энергия связи.

Демонстрации

    Свободные электромагнитные колебания.

    Осциллограмма переменного тока.

    Конденсатор в цепи переменного тока.

    Катушка в цепи переменного тока.

    Резонанс в последовательной цепи переменного тока.

    Сложение гармонических колебаний.

    Генератор переменного тока.

    Трансформатор.

    Излучение и прием электромагнитных волн.

    Отражение и преломление электромагнитных волн.

    Интерференция и дифракция электромагнитных волн.

    Поляризация электромагнитных волн.

    Модуляция и детектирование высокочастотных электромагнитных колебаний.

    Детекторный радиоприемник.

    Интерференция света.

    Дифракция света.

    Полное внутреннее отражение света.

    Получение спектра с помощью призмы.

    Получение спектра с помощью дифракционной решетки.

    Поляризация света.

    Спектроскоп.

    Фотоаппарат.

    Проекционный аппарат.

    Микроскоп.

    Телескоп

Лабораторные работы

    Исследование зависимости силы тока от электроемкости конденсатора в цепи переменного тока.

    Оценка длины световой волны по наблюдению дифракции на щели.

    Определение спектральных границ чувствительности человеческого глаза с помощью дифракционной решетки.

    Измерение показателя преломления стекла.

    Расчет и получение увеличенных и уменьшенных изображений с помощью собирающей линзы.

Физический практикум (8 ч)

Квантовая физика (34 ч)

Гипотеза М.Планка о квантах. Фотоэффект. Опыты А.Г.Столетова. Уравнение А.Эйнштейна для фотоэффекта. Фотон. Опыты П.Н.Лебедева и С.И.Вавилова .

Планетарная модель атома. Квантовые постулаты Бора и линейчатые спектры. Гипотеза де Бройля о волновых свойствах частиц. Дифракция электронов. Соотношение неопределенностей Гейзенберга. Спонтанное и вынужденное излучение света. Лазеры.

Модели строения атомного ядра. Ядерные силы. Нуклонная модель ядра. Энергия связи ядра. Ядерные спектры. Ядерные реакции. Цепная реакция деления ядер. Ядерная энергетика. Термоядерный синтез. Радиоактивность. Дозиметрия. Закон радиоактивного распада. Статистический характер процессов в микромире. Элементарные частицы. Фундаментальные взаимодействия. Законы сохранения в микромире.

Демонстрации

    Фотоэффект.

    Линейчатые спектры излучения.

  1. Счетчик ионизирующих частиц.

    Камера Вильсона.

    Фотографии треков заряженных частиц.

Лабораторные работы

    Наблюдение линейчатых спектров

Физический практикум (6 ч)

Строение Вселенной (8 ч)

Солнечная система. Звезды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звезд. Наша Галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной. Применимость законов физики для объяснения природы космических объектов. «Красное смещение» в спектрах галактик. Современные взгляды на строение и эволюцию Вселенной.

Демонстрации

1. Фотографии Солнца с пятнами и протуберанцами.

2. Фотографии звездных скоплений и газопылевых туманностей.

3. Фотографии галактик.

Наблюдения

1. Наблюдение солнечных пятен.

2. Обнаружение вращения Солнца.

3. Наблюдения звездных скоплений, туманностей и галактик.

4. Компьютерное моделирование движения небесных тел.

Экскурсии (8 ч) (во внеурочное время)

Обобщающее повторение (20 ч)

Резерв свободного учебного времени (35 ч)

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

ОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЙ СРЕДНЕГО (ПОЛНОГО) ОБЩЕГО

ОБРАЗОВАНИЯ

В результате изучения физики на профильном уровне ученик должен

знать/понимать

    смысл понятий: физическое явление, физическая величина, модель, гипотеза, принцип, постулат, теория, пространство, время, инерциальная система отсчета, материальная точка, вещество, взаимодействие, идеальный газ, резонанс, электромагнитные колебания, электромагнитное поле, электромагнитная волна, атом, квант, фотон, атомное ядро, дефект массы, энергия связи, радиоактивность, ионизирующее излучение, планета, звезда, галактика, Вселенная;

    смысл физических величин: перемещение,скорость, ускорение, масса, сила, давление, импульс, работа, мощность, механическая энергия, момент силы, период, частота, амплитуда колебаний, длина волны, внутренняя энергия, средняя кинетическая энергия частиц вещества, абсолютная температура, количество теплоты, удельная теплоемкость, удельная теплота парообразования, удельная теплота плавления, удельная теплота сгорания, элементарный электрический заряд, напряженность электрического поля, разность потенциалов, электроемкость, энергия электрического поля, сила электрического тока, электрическое напряжение, электрическое сопротивление, электродвижущая сила, магнитный поток, индукция магнитного поля, индуктивность, энергия магнитного поля, показатель преломления, оптическая сила линзы;

    смысл физических законов, принципов и постулатов (формулировка, границы применимости):законы динамики Ньютона, принципы суперпозиции и относительности, закон Паскаля, закон Архимеда, закон Гука, закон всемирного тяготения, законы сохранения энергии, импульса и электрического заряда, основное уравнение кинетической теории газов, уравнение состояния идеального газа, законы термодинамики, закон Кулона, закон Ома для полной цепи, закон Джоуля-Ленца, закон электромагнитной индукции, законы отражения и преломления света, постулаты специальной теории относительности, закон связи массы и энергии, законы фотоэффекта, постулаты Бора, закон радиоактивного распада;

    вклад российских и зарубежных ученых , оказавших наибольшее влияние на развитие физики;

уметь

    описывать и объяснять результаты наблюдений и экспериментов: независимость ускорения свободного падения от массы падающего тела; нагревание газа при его быстром сжатии и охлаждение при быстром расширении; повышение давления газа при его нагревании в закрытом сосуде; броуновское движение; электризация тел при их контакте; взаимодействие проводников с током; действие магнитного поля на проводник с током; зависимость сопротивления полупроводников от температуры и освещения; электромагнитная индукция; распространение электромагнитных волн; дисперсия, интерференция и дифракция света; излучение и поглощение света атомами, линейчатые спектры; фотоэффект; радиоактивность;

    приводить примеры опытов, иллюстрирующих, что: наблюдения и эксперимент служат основой для выдвижения гипотез и построения научных теорий; эксперимент позволяет проверить истинность теоретических выводов; физическая теория дает возможность объяснять явления природы и научные факты; физическая теория позволяет предсказывать еще неизвестные явления и их особенности; при объяснении природных явлений используются физические модели; один и тот же природный объект или явление можно исследовать на основе использования разных моделей; законы физики и физические теории имеют свои определенные границы применимости;

    описывать фундаментальные опыты, оказавшие существенное влияние на развитие физики ;

    применять полученные знания для решения физических задач;

    определять: характер физического процесса по графику, таблице, формуле; продукты ядерных реакций на основе законов сохранения электрического заряда и массового числа;

    измерять: скорость,ускорение свободного падения; массу тела, плотность вещества, силу, работу, мощность, энергию, коэффициент трения скольжения, влажность воздуха, удельную теплоемкость вещества, удельную теплоту плавления льда, электрическое сопротивление, ЭДС и внутреннее сопротивление источника тока, показатель преломления вещества, оптическую силу линзы, длину световой волны; представлять результаты измерений с учетом их погрешностей;

    приводить примеры практического применения физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио- и телекоммуникаций; квантовой физики в создании ядерной энергетики, лазеров;

    воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, научно-популярных статьях; использовать новые информационные технологии для поиска, обработки и предъявления информации по физике в компьютерных базах данных и сетях (сети Интернет);

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

    обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;

    анализа и оценки влияния на организм человека и другие организмы загрязнения окружающей среды;

    рационального природопользования и защиты окружающей среды;

    определения собственной позиции по отношению к экологическим проблемам и поведению в природной среде.

1 Время проведения лабораторной работы может варьироваться от 10 до 45 минут

МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ШКОЛА № 6 ИМЕНИ ПОДВОЙСКОГО

УТВЕРЖДАЮ

Директор школы __________ Чезлова О.А.

Приказ №01-08/ _______ от 01.09.2016

ПРЕДМЕТНАЯ ПРОГРАММА ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

ПО ФИЗИКЕ

срок реализации 3 года

(2016 - 2019 гг.)

г. Ярославль - 2016

1.ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Предметная программа учебного курса «Физика» (7-9классы) является составной частью Основной образовательной программы школы, на её основе создаётся рабочая программа учителя.

Рабочая программа по предмету «Физика» составлена на основе следующих документов:

1. ​ Федерального закона «Об образовании» в Российской Федерации № 273-ФЗ от «29» декабря 2012г.

2. Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки Российской Федерации от «17» декабря 2010 г. № 1897. / М-во образования и науки Рос.Федерации. - 2-е изд. - М.: Просвещение, 2013.

3. Приказ Министерства образования и науки Российской Федерации от 29 декабря 2014г. № 1644 «О внесении изменений в приказ Министерства образования и науки Российской Федерации от 17 декабря 2010г. № 1877 об утверждении ФГОС ООО».

4. Примерной программы по физике / Примерная основная образовательная программа основного общего образования// [Электронный ресурс] // Режим доступа свободный http://fgosreestr.ru .

5. ​ ООП ООО МОУ СОШ №6 (утверждена приказом директора № 01-08 / 80-07 от 25августа 2015 г.).

6. ​ Учебного плана МОУ СОШ №6.

Назначение программы.

Предметная программа по физике обеспечивает поэтапное достижение планируемых результатов освоения Основной образовательной программы школы, а именно:

Обеспечение планируемых результатов по достижению выпускником целевых установок знаний, умений, навыков, компетенций и компетентностей, определяемых личностными, семейными, общественными, государственными потребностями и возможностями обучающегося, индивидуальными особенностями его развития, состояния его здоровья;

Становление и развитие личности в ее индивидуальности, самобытности, уникальности, неповторимости.

Она определяет цели, содержание курса, планируемые результаты по физике для каждого года обучения, а также методику достижение планируемых результатов.

Таким образом, предметная программа задаёт целевые и содержательные ориентиры для написания рабочей программы учителя физики,способствует созданию единого образовательного пространства в школе.

Предметная программа соответствует требованиям образовательного стандарта к структуре программ отдельных учебных предметов, курсов (п.18.2.2).

. Пояснительная записка.

. Общая характеристика учебного предмета «Физика».

. Описание места учебного предмета в учебном плане школы.

. Личностные, метапредметные и предметные результаты освоения учебного предмета «Физика».

. Содержание учебного предмета, курса.

. Тематическое планирование с определением основных видов учебной деятельности.

. Описание учебно-методического и материально-технического обеспечения образовательного процесса.

. Планируемые результаты освоения учебного предмета «Физика».

2. ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА»

Школьный курс физики — системообразующий для естественнонаучных предметов, поскольку физические зако-ны, лежащие в основе мироздания, являются основой содер- жания курсов химии, биологии, географии, экологии, литературы, ОБЖ и астрономии. Физика вооружает школьников научным методом познания, позволяющим получать объективные знания об окружаю-щем мире.

В 7 и 8 классах происходит знакомство с физическими яв-лениями, методом научного познания, формирование основ-ных физических понятий, приобретение умений измерять физические величины, проводить лабораторный экспери-мент по заданной схеме. В 9 классе начинается изучение ос-новных физических законов, лабораторные работы стано-вятся более сложными, школьники учатся планировать экс-перимент самостоятельно.

Цели изучения физики в основной школе следующие:

. усвоение учащимися смысла основных понятий и зако-нов физики, взаимосвязи между ними;

. формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;

. систематизация знаний о многообразии объектов и явле-ний природы, о закономерностях процессов и о законах фи-зики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации;

. формирование убежденности в познаваемости окружаю-щего мира и достоверности научных методов его изучения;

. организация экологического мышления и ценностного отношения к природе;

. развитие познавательных интересов и творческих спо-собностей учащихся, а также интереса к расширению и уг-лублению физических знаний и выбора физики как про-фильного предмета.

Достижение целей обеспечивается решением следующих задач :

. знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;

. приобретение учащимися знаний о механических, теп-ловых, электромагнитных и квантовых явлениях, физиче-ских величинах, характеризующих эти явления;

. формирование у учащихся умений наблюдать природ-ные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измери-тельных приборов, широко применяемых в практической жизни;

. овладение учащимися такими общенаучными понятия-ми, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки; . понимание учащимися отличий научных данных от не-
проверенной информации, ценности науки для удовлетворе-ния бытовых, производственных и культурных потребнос-тей человека.

Изучение предметной области " Физика " должно обеспечить :

· формирование целостной научной картины мира;

· понимание возрастающей роли естественных наук и научных исследований в современном мире, постоянного процесса эволюции научного знания, значимости международного научного сотрудничества;

· овладение научным подходом к решению различных задач;

· овладение умениями формулировать гипотезы, конструировать, проводить эксперименты, оценивать полученные результаты;

· овладение умением сопоставлять экспериментальные и теоретические знания с объективными реалиями жизни;

· воспитание ответственного и бережного отношения к окружающей среде;

· овладение экосистемной познавательной моделью и ее применение в целях прогноза экологических рисков для здоровья людей, безопасности жизни, качества окружающей среды;

· осознание значимости концепции устойчивого развития;

· формирование умений безопасного и эффективного использования лабораторного оборудования, проведения точных измерений и адекватной оценки полученных результатов, представления научно обоснованных аргументов своих действий, основанных на межпредметном анализе учебных задач.

3.ОПИСАНИЕ МЕСТА УЧЕБНОГО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ ШКОЛЫ

Для реализации программы основного общего образования по математике определяется нормативный срок - 3 года.

В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования предмет «Физикеа» изучается с 5-ого по 9-ый класс. Федеральный базисный (образовательный) учебный план для образовательных учреждений Российской Федерации (вариант 1) предусматривает обязательное изучение математики на этапе основного общего образования в объеме 210 часов. В том числе в 7 классе -70 часов, в 8 классе- 70 часов, в 9 классе -70 часов. Общее количество уроков в неделю с 7 по 9 классы составляет 6 часов (7 класс- 2 часа, 8 класс- 2 часа, 9 класс-2 часа).

4.ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА».

Личностными результатами обучения физики в основной школе являются:

Сформированность чувства гордости за достижения российской науки в области физики;

Сформированность понимания значимости физического образования для развития личности;

Сформированность ценности точности и рациональности вычислений;

Формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развития опыта участия в социально значимом труде;

Формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видов деятельности;

Мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;

Метапредметные результаты включают универсальные учебные действия (регулятивные, познавательные, коммуникативные).

Регулятивные УУД:

1. Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности.

Обучающийся сможет:

· идентифицировать собственные проблемы и определять главную проблему;

· выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;

· ставить цель деятельности на основе определенной проблемы и существующих возможностей;

· формулировать учебные задачи как шаги достижения поставленной цели деятельности.

2. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач.

Обучающийся сможет:

· определять необходимые действия в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;

· определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;

· составлять план решения проблемы (выполнения проекта, проведения исследования);

· планировать и корректировать свою индивидуальную образовательную траекторию.

3. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией.

Обучающийся сможет:

· определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;

· отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;

· сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.

4. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения .

Обучающийся сможет:

· оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;

· обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов;

· фиксировать и анализировать динамику собственных образовательных результатов.

5. Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной.

Обучающийся сможет:

· наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;

Познавательные УУД:

6. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы.

Обучающийся сможет:

· излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;

· делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.

7. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач .

Обучающийся сможет:

· строить модель/схему на основе условий задачи и/или способа ее решения;

· строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;

8. Смысловое чтение.

Обучающийся сможет:

· находить в тексте требуемую информацию (в соответствии с целями своей деятельности);

· ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;

· устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;

10. Развитие мотивации к овладению культурой активного использования словарей и других поисковых систем.

Обучающийся сможет :

· определять необходимые ключевые поисковые слова и запросы;

· осуществлять взаимодействие с электронными поисковыми системами, словарями;

· формировать множественную выборку из поисковых источников для объективизации результатов поиска;

· соотносить полученные результаты поиска со своей деятельностью.

Коммуникативные УУД:

11. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение.

Обучающийся сможет:

· определять возможные роли в совместной деятельности;

· играть определенную роль в совместной деятельности;

· принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

· определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;

· строить позитивные отношения в процессе учебной и познавательной деятельности;

· корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);

· критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

· предлагать альтернативное решение в конфликтной ситуации;

· выделять общую точку зрения в дискуссии;

· договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;

· организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);

· устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.

12. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью.

Обучающийся сможет:

· представлять в устной или письменной форме развернутый план собственной деятельности;

· высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;

· принимать решение в ходе диалога и согласовывать его с собеседником;

· использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления;

· делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.

13. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее - ИКТ).

Обучающийся сможет:

· целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;

· выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;

· выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;

· использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание докладов, рефератов, создание презентаций и др.;

Предметными результатами обучения физики основной школе являются:

1) формирование представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания; о системообразующей роли физики для развития других естественных наук, техники и технологий; научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;

2) формирование первоначальных представлений о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усвоение основных идей механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладение понятийным аппаратом и символическим языком физики;

3) приобретение опыта применения научных методов познания, наблюдения физических явлений, проведения опытов, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов; понимание неизбежности погрешностей любых измерений;

4) понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду; осознание возможных причин техногенных и экологических катастроф;

5) осознание необходимости применения достижений физики и технологий для рационального природопользования;

6) овладение основами безопасного использования естественных и искусственных электрических и магнитных полей, электромагнитных и звуковых волн, естественных и искусственных ионизирующих излучений во избежание их вредного воздействия на окружающую среду и организм человека;

7) развитие умения планировать в повседневной жизни свои действия с применением полученных знаний законов механики, электродинамики, термодинамики и тепловых явлений с целью сбережения здоровья;

8) формирование представлений о нерациональном использовании природных ресурсов и энергии, загрязнении окружающей среды как следствие несовершенства машин и механизмов.

5.СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА»

7 класс

Физика и физические методы изучения природы

Физика - наука о природе. Физические тела и явления. Наблюдение и описание физических явлений. Физический эксперимент. Моделирование явлений и объектов природы.

Физические величины и их измерение. Точность и погрешность измерений. Международная система единиц.

Физические законы и закономерности. Физика и техника. Научный метод познания. Роль физики в формировании естественнонаучной грамотности.

Тепловые явления

Строение вещества. Атомы и молекулы. Тепловое движение атомов и молекул. Диффузия в газах, жидкостях и твердых телах. Броуновское движение. Взаимодействие (притяжение и отталкивание) молекул. Агрегатные состояния вещества. Различие в строении твердых тел, жидкостей и газов.

1.Измерение размеров малых тел.

1.Проверка гипотезы о линейной зависимости длины столбика жидкости в трубке от температуры.

Механические явления

Физические величины, необходимые для описания движения и взаимосвязь между ними (путь, скорость, время движения). Равномерное и равноускоренное прямолинейное движение. Инерция. Масса тела. Плотность вещества. Сила. Единицы силы. Свободное падение тел. Сила тяжести. Закон всемирного тяготения. Сила упругости. Закон Гука. Вес тела. Невесомость. Связь между силой тяжести и массой тела. Динамометр. Равнодействующая сила. Сила трения. Трение скольжения. Трение покоя. Трение в природе и технике.

Механическая работа. Мощность. Энергия. Потенциальная и кинетическая энергия. Превращение одного вида механической энергии в другой. Закон сохранения полной механической энергии.

Простые механизмы. Условия равновесия твердого тела, имеющего закрепленную ось движения. Момент силы. Центр тяжести тела. Рычаг. Равновесие сил на рычаге. Рычаги в технике, быту и природе. Подвижные и неподвижные блоки. Равенство работ при использовании простых механизмов («Золотое правило механики»). Коэффициент полезного действия механизма.

Давление твердых тел. Единицы измерения давления. Способы изменения давления. Давление жидкостей и газов Закон Паскаля. Давление жидкости на дно и стенки сосуда. Сообщающиеся сосуды. Вес воздуха. Атмосферное давление. Измерение атмосферного давления. Опыт Торричелли. Барометр-анероид. Атмосферное давление на различных высотах. Гидравлические механизмы (пресс, насос). Давление жидкости и газа на погруженное в них тело. Архимедова сила. Плавание тел и судов Воздухоплавание.

Проведение прямых измерений физических величин

1.Измерение массы тела.

2.Измерение объема тела.

3.Измерение силы.

4.Измерение давления воздуха в баллоне под поршнем.

1.Измерение плотности вещества твердого тела.

2.Определение коэффициента трения скольжения.

3.Определение жесткости пружины.

4.Определение выталкивающей силы, действующей на погруженное в жидкость тело.

5.Определение момента силы.

6.Измерение скорости равномерного движения.

7.Измерение средней скорости движения.

8.Определение работы и мощности.

9.Исследование зависимости выталкивающей силы от объема погруженной части от плотности жидкости, ее независимости от плотности и массы тела.

10.Исследование зависимости силы трения от характера поверхности, ее независимости от площади.

1.Наблюдение зависимости давления газа от объема и температуры.

2.Исследование зависимости веса тела в жидкости от объема погруженной части.

4.Исследование зависимости массы от объема.

5.Исследование зависимости силы трения от силы давления.

6.Исследование зависимости деформации пружины от силы.

1.Конструирование наклонной плоскости с заданным значением КПД.

2.Конструирование ареометра и испытание его работы.

3.Конструирование модели лодки с заданной грузоподъемностью.

8 класс

Тепловые явления

Тепловое равновесие. Температура. Связь температуры со скоростью хаотического движения частиц. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Теплопроводность. Конвекция. Излучение. Примеры теплопередачи в природе и технике. Количество теплоты. Удельная теплоемкость. Удельная теплота сгорания топлива. Закон сохранения и превращения энергии в механических и тепловых процессах. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования и конденсации. Влажность воздуха. Работа газа при расширении. Преобразования энергии в тепловых машинах (паровая турбина, двигатель внутреннего сгорания, реактивный двигатель). КПД тепловой машины. Экологические проблемы использования тепловых машин.

Проведение прямых измерений физических величин

1. Измерение времени процесса.

2. Измерение температуры.

Расчет по полученным результатам прямых измерений зависимого от них параметра (косвенные измерения)

1. Определение относительной влажности.

2. Определение количества теплоты.

3. Определение удельной теплоемкости.

Наблюдение явлений и постановка опытов (на качественном уровне) по обнаружению факторов, влияющих на протекание данных явлений

1. Наблюдение зависимости температуры остывающей воды от времени.

2. Исследование зависимости одной физической величины от другой с представлением результатов в виде графика или таблицы.

Электромагнитные явления

Электризация физических тел. Взаимодействие заряженных тел. Два рода электрических зарядов. Делимость электрического заряда. Элементарный электрический заряд. Закон сохранения электрического заряда. Проводники, полупроводники и изоляторы электричества. Электроскоп. Электрическое поле как особый вид материи. Напряженность электрического поля. Действие электрического поля на электрические заряды. Конденсатор. Энергия электрического поля конденсатора.

Электрический ток. Источники электрического тока. Электрическая цепь и ее составные части. Направление и действия электрического тока. Носители электрических зарядов в металлах. Сила тока. Электрическое напряжение. Электрическое сопротивление проводников. Единицы сопротивления.

Зависимость силы тока от напряжения. Закон Ома для участка цепи. Удельное сопротивление. Реостаты. Последовательное соединение проводников. Параллельное соединение проводников.

Работа электрического поля по перемещению электрических зарядов. Мощность электрического тока. Нагревание проводников электрическим током. Закон Джоуля - Ленца. Электрические нагревательные и осветительные приборы. Короткое замыкание.

Магнитное поле. Магнитное поле тока. Опыт Эрстеда. Магнитное поле постоянных магнитов. Магнитное поле Земли. Электромагнит. Магнитное поле катушки с током. Применение электромагнитов. Электродвигатель.

Свет - электромагнитные волна. Источники света. Закон прямолинейного распространение света. Закон отражения света. Плоское зеркало. Закон преломления света. Линзы. Фокусное расстояние и оптическая сила линзы. Изображение предмета в зеркале и линзе. Оптические приборы. Глаз как оптическая система.

Проведение прямых измерений физических величин

1. Измерение силы тока и его регулирование.

2. Измерение напряжения.

3. Измерение углов падения и преломления.

4. Измерение фокусного расстояния линзы.

Расчет по полученным результатам прямых измерений зависимого от них параметра (косвенные измерения)

1. Измерение работы и мощности электрического тока.

2. Измерение сопротивления.

3. Определение оптической силы линзы.

Наблюдение явлений и постановка опытов (на качественном уровне) по обнаружению факторов, влияющих на протекание данных явлений

1. Исследование явления взаимодействия катушки с током и магнита.

2. Наблюдение явления отражения и преломления света.

3. Обнаружение зависимости сопротивления проводника от его параметров и вещества.

4. Исследование зависимости одной физической величины от другой с представлением результатов в виде графика или таблицы.

5. Исследование зависимости силы тока через проводник от напряжения.

6. Исследование зависимости силы тока через лампочку от напряжения.

7. Исследование зависимости угла преломления от угла падения.

Проверка заданных предположений (прямые измерения физических величин и сравнение заданных соотношений между ними). Проверка гипотез

1. Проверка гипотезы: при последовательно включенных лампочки и проводника или двух проводников напряжения складывать нельзя (можно).

2. Проверка правила сложения токов на двух параллельно включенных резисторов.

Знакомство с техническими устройствами и их конструирование

1. Сборка электрической цепи и измерение силы тока в ее различных участках.

2. Сборка электромагнита и испытание его действия.

3. Изучение электрического двигателя постоянного тока (на модели).

4. Конструирование электродвигателя.

5. Конструирование модели телескопа.

6. Оценка своего зрения и подбор очков.

7. Изучение свойств изображения в линзах.

9 класс

Механические явления

Механическое движение. Материальная точка как модель физического тела. Относительность механического движения. Система отсчета.Физические величины, необходимые для описания движения и взаимосвязь между ними (путь, перемещение, скорость, ускорение, время движения). Равномерное и равноускоренное прямолинейное движение. Равномерное движение по окружности. Первый закон Ньютона и инерция.. Сила. Единицы силы. Второй закон Ньютона. Третий закон Ньютона. Свободное падение тел. Сила тяжести. Закон всемирного тяготения. Сила упругости. Закон Гука. Вес тела. Невесомость. Равнодействующая сила.

Импульс. Закон сохранения импульса. Реактивное движение. Механическая работа. Мощность. Энергия. Потенциальная и кинетическая энергия. Превращение одного вида механической энергии в другой. Закон сохранения полной механической энергии.

Механические колебания. Период, частота, амплитуда колебаний. Резонанс. Механические волны в однородных средах. Длина волны. Звук как механическая волна. Громкость и высота тона звука.

Расчет по полученным результатам прямых измерений зависимого от них параметра (косвенные измерения)

1. Измерение скорости равномерного движения.

2. Измерение средней скорости движения.

3. Измерение ускорения равноускоренного движения.

4. Определение частоты колебаний груза на пружине и нити.

Наблюдение явлений и постановка опытов (на качественном уровне) по обнаружению факторов, влияющих на протекание данных явлений

1. Наблюдение зависимости периода колебаний груза на нити от длины и независимости от массы.

2. Наблюдение зависимости периода колебаний груза на пружине от массы и жесткости.

3. Исследование зависимости одной физической величины от другой с представлением результатов в виде графика или таблицы.

4. Исследование зависимости пути от времени при равноускоренном движении без начальной скорости.

5. Исследование зависимости скорости от времени и пути при равноускоренном движении.

6. Исследование зависимости периода колебаний груза на нити от длины.

7. Исследование зависимости периода колебаний груза на пружине от жесткости и массы.

Проверка заданных предположений (прямые измерения физических величин и сравнение заданных соотношений между ними). Проверка гипотез

1. Проверка гипотезы о прямой пропорциональности скорости при равноускоренном движении пройденному пути.

Электромагнитные явления

Магнитное поле. Индукция магнитного поля. Магнитное поле тока. Магнитное поле постоянных магнитов. Магнитное поле Земли. Электромагнит. Магнитное поле катушки с током. Применение электромагнитов. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Электродвигатель. Явление электромагнитной индукция. Опыты Фарадея.

Электромагнитные колебания. Колебательный контур. Электрогенератор. Переменный ток. Трансформатор. Передача электрической энергии на расстояние. Электромагнитные волны и их свойства. Принципы радиосвязи и телевидения. Влияние электромагнитных излучений на живые организмы.

Свет - электромагнитные волна. Скорость света . Дисперсия света. Интерференция и дифракция света.

Наблюдение явлений и постановка опытов (на качественном уровне) по обнаружению факторов, влияющих на протекание данных явлений

1.Исследование явления взаимодействия катушки с током и магнита.

2.Исследование явления электромагнитной индукции.

3.Наблюдение явления дисперсии.

Знакомство с техническими устройствами и их конструирование

1. Конструирование простейшего генератора.

Квантовые явления

Строение атомов. Планетарная модель атома. Квантовый характер поглощения и испускания света атомами. Линейчатые спектры.

Опыты Резерфорда.

Состав атомного ядра. Протон, нейтрон и электрон. Закон Эйнштейна о пропорциональности массы и энергии. Дефект масс и энергия связи атомных ядер. Радиоактивность. Период полураспада. Альфа-излучение. Бета-излучение. Гамма-излучение. Ядерные реакции. Источники энергии Солнца и звезд. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Влияние радиоактивных излучений на живые организмы.

Проведение прямых измерений физических величин

1.Измерение радиоактивного фона.

Строение и эволюция Вселенной

Геоцентрическая и гелиоцентрическая системы мира. Фи-зическая природа небесных тел Солнечной системы. Проис-хождение Солнечной системы. Физическая природа Солнца и звезд. Строение Вселенной. Эволюция Вселенной. Гипотеза Большого взрыва.

Резервное время (3 ч)

6.ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ С ОПРЕДЕЛЕНИЕМ ОСНОВНЫХ ВИДОВ УЧЕБНОЙ ДНЯТЕЛЬНОСТИ ПРИВЕДЕНО В РАБОЧЕЙ ПРОГРАММЕ УЧИТЕЛЯ.

7.ОПИСАНИЕ УЧЕБНО-МЕТОДИЧЕСКОГО И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ПРЕДМЕТУ «МАТЕМАТИКА»

Обеспечение

Фактическая оснащенность

1.учебно-методическое

Учебно-методический комплекс

1. А.В.Перышкин.Физика, 7.

2. А.В.Перышкин.Физика, 8. Учебник для общеобразовательных учреждений - М.:Дрофа.

3. А.В.Перышкин, Е.М.Гутник.Физика, 9. Учебник для общеобразовательных учреждений - М.:Дрофа.

Рабочие тетради

1. Рабочая тетрадь: Физика 7класс. Т.А.Ханнанова,Н.К.Ханнанова. - М.:Дрофа

2. Рабочая тетрадь: Физика 8 класс. Т.А.Ханнанова,Н.К.Ханнанова. - М.:Дрофа

3. Рабочая тетрадь: Физика 9 класс. Т.А.Ханнанова,Н.К.Ханнанова. - М.:Дрофа

Контрольно-измерительные материалы

1. Т.А.Ханнанова,Н.К.Ханнанова .Физика.Тесты.7 класс - М.: Дрофа.

2.Т.А.Ханнанова,Н.К.Ханнанова .Физика.Тесты.8 класс - М.: Дрофа

3.Т.А.Ханнанова,Н.К.Ханнанова .Физика.Тесты.9 класс - М.: Дрофа

4. А.Е.Марон,Е.А.Марон.Дидактические материалы.7 класс-М: Дрофа.

1) 5. Марон, А. Е. Физика. 7 кл. : тренировочные задания; Задания для самоконтроля; Самостоятельные работы и др. Учебно-методическое пособие. - М. : Дрофа.

6) 6.Марон, А. Е. Физика. 8 кл. : Тренировочные задания. Задания для самоконтроля. Самостоятельные работы. Разноуровневые контрольные работы. Примеры решения задач. - М. : Дрофа.

7.Марон, А. Е. Физика. 9 кл. : Тренировочные задания. Задания для самоконтроля. Самостоятельные работы. Разноуровневые контрольные работы. Примеры решения задач - М. : Дрофа..

8..А.В. Перышкин Сборник задач по физике: 7 - 9 кл. ФГОС: к учебникам А.В. Перышкина и др. - М.: «Экзамен».

9..Лукашик В.И. Сборник задач по физике для 7 - 9 классов общеобразовательных учреждений - М.: Просвещение.

10..А.В. Чеботарева Тесты по физике к учебнику А.В. Перышкин. «Физика.7 кл» «Физика. 8 кл», «Физика. 9 кл» - М.: Экзамен.

1. Н.В. Филинович,Е.М.Гутник. Методическое пособие к учебникам «Физика».7-9 класс- М:Дрофа

2. Н.В. Филинович. Методическое пособие к учебнику «Физика».7класс- М:Дрофа

3 . Н.В. Филинович. Методическое пособие к учебнику «Физика».8класс- М:Дрофа

4.Н.В. Филинович. Методическое пособие к учебнику «Физика».9класс- М:Дрофа

2. материально-техническое

Средства ИКТ

Ноутбук, колонки, принтер, мультимедийный проектор, интерактивная доска

ЦОР/Информационные источники

1.Федеральный центр информационно-образовательных ресурсов (ФЦИОР) httpHYPERLINK " http://fcior.edu.ru /" ://HYPERLINK " http://fcior.edu.ru /" fciorHYPERLINK " http://fcior.edu.ru /" .HYPERLINK " http://fcior.edu.ru /" eduHYPERLINK " http://fcior.edu.ru /" .HYPERLINK " http://fcior.edu.ru /" ru

2. Единая коллекция цифровых образовательных ресурсов httpHYPERLINK "http://school- collection.edu.ru /" ://HYPERLINK "http://school- collection.edu.ru /" schoolHYPERLINK "http://school- collection.edu.ru /" -HYPERLINK "http://school- collection.edu.ru /" collectionHYPERLINK "http://school- collection.edu.ru /" .HYPERLINK "http://school- collection.edu.ru /" eduHYPERLINK "http://school- collection.edu.ru /" .HYPERLINK "http://school- collection.edu.ru /" ru

4. Я иду на урок физики (методические разработки): www.festival.1sepemberHYPERLINK "http://www.festival.1sepember.ru/" .HYPERLINK "http://www.festival.1sepember.ru/" ru

5. Уроки - конспекты www.pedsovet.ru

6. class-fizika -narod.ru/

7.http://videouroki.net/view_news.php?newsid=53

8. http:physics.nad.ru (анимация физических процессов)

9. http:www.history.ru/freeph.htm (обучающие программы по физике)

10. http:phdep.ifmo.ru (виртуальные лабораторные работы)

8.ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ ПРЕДМЕТА

«ФИЗИКА» НА СТУПЕНИ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

Выпускник научится:

· осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни;

· сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;

· самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;

· воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;

· создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.

Механические явления

Выпускник научится:

· распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического движения, свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, передача давления твердыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых тел, имеющих закрепленную ось вращения, колебательное движение, резонанс, волновое движение (звук);

· описывать изученные свойства тел и механические явления, используя физические величины: путь, перемещение, скорость, ускорение, период обращения, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

· анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;

· решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, коэффициент трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

· использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах; примеры использования возобновляемых источников энергии; экологических последствий исследования космического пространств;

· различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, Архимеда и др.);

· находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

Тепловые явления

Выпускник научится:

· распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;

Выпускник получит возможность научиться:

· использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания, тепловых и гидроэлектростанций;

· различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;

· находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки.

Выпускник научится:

· распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, прямолинейное распространение света, отражение и преломление света, дисперсия света.

· описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.

· решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

· использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;

· различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.);

· использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

· находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Квантовые явления

Выпускник научится:

Выпускник получит возможность научиться:

· использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

· соотносить энергию связи атомных ядер с дефектом массы;

· приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования;

· понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

Выпускник получит возможность научиться:

· указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;

· различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой;

· различать гипотезы о происхождении Солнечной системы.

В нашей школе планируемые результаты освоения предметной программы по физике сформулированы более подробно

Метапредметные результаты

7 класс

8 класс

9 класс

умение ставить цель деятельности на основе определенной проблемы и существующих возможностей, определять необходимые действие(я) в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;

умение выдвигать версии решения проблемы, формулировать гипотезы,

определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи; составлять план решения проблемы (выполнения проекта, проведения исследования);

умение идентифицировать собственные проблемы и определять главную проблему; формулировать гипотезы, предвосхищать конечный результат;

понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом; определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;

выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;

определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;

подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства;

выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных ему слов;

определять логические связи между предметами, обозначать данные логические связи с помощью знаков в схеме;

строить модель/схему на основе условий задачи и/или способа ее решения

систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;

оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;

определять критерии правильности (корректности) выполнения учебной задачи;

принимать решение в учебной ситуации и нести за него ответственность;

выделять общий признак двух или нескольких предметов и объяснять их сходство;

объединять предметы в группы по определенным признакам, сравнивать, классифицировать и обобщать факты;

строить рассуждение от общих закономерностей к частным и от частных к общим закономерностям;

строить рассуждение на основе сравнения предметов, выделяя при этом общие признаки;

обозначать символом и знаком предмет;

ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст; определять необходимые ключевые поисковые слова и запросы; играть определенную роль в совместной деятельности; принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

определять задачу коммуникации и в соответствии с ней отбирать речевые средства;

отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);

использовать невербальные средства или наглядные материалы, подготовленные/отобранные под руководством учителя;

выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации.

анализировать существующие и планировать будущие образовательные результаты;

обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;

работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;

анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;

соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;

умение излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;

создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;

строить доказательство: прямое, косвенное, от противного;

устанавливать взаимосвязь описанных в тексте событий, явлений, процессов; формировать множественную выборку из поисковых источников для объективизации результатов поиска; соотносить полученные результаты поиска со своей деятельностью; определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации; корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен); критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления.

Умение формулировать учебные задачи как шаги достижения поставленной цели деятельности;

описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определенного класса;

планировать и корректировать свою индивидуальную образовательную траекторию;

находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;

свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;

фиксировать и анализировать динамику собственных образовательных результатов;

самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;

делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными; предлагать альтернативное решение в конфликтной ситуации; выделять общую точку зрения в дискуссии;

устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога;

соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;

делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его;

использовать информацию с учетом этических и правовых норм;

создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.

Предметные результаты

Ученик научится:

· соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;

· понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;

· распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;

· ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.

· понимать роль эксперимента в получении научной информации;

· проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила, температура, атмосферное давление, влажность воздуха, напряжение, сила тока, радиационный фон (с использованием дозиметра); при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений.

· проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

· проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений;

· анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения;

· понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;

· использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы Интернет.

7 класс

8 класс

9 класс

Ученик научится:

Механические явления

· распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, относительность механического движения, свободное падение тел,инерция, взаимодействие тел, передача давления твердыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых тел, имеющих закрепленную ось вращения;

· описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, сила трения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

· анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;

· различать основные признаки изученных физических моделей: материальная точка;

· решать задачи, используя физические законы (закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, масса тела, плотность вещества, сила, давление, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, коэффициент трения,): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Тепловые явления

· распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; агрегатные состояния вещества

· анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества;

· приводить примеры практического использования физических знаний о тепловых явлениях;

· различать основные признаки изученных физических моделей: материальная точка, моделей строения газов, жидкостей и твердых тел;

Ученик научится:

Тепловые явления

· распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;

· описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

· анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;

· различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;

· приводить примеры практического использования физических знаний о тепловых явлениях;

· решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления

· распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов, действие магнитного поля на проводник с током, действие электрического поля на заряженную частицу прямолинейное распространение света, отражение и преломление света.

· составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).

· использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе.

· описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы,; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.

· анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.

· приводить примеры практического использования физических знаний о электромагнитных явлениях

· решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Ученик научится:

Механические явления

· распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического движения, свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, колебательное движение, резонанс, волновое движение (звук);

· описывать изученные свойства тел и механические явления, используя физические величины: путь, перемещение, скорость, ускорение, период обращения, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, амплитуда, период и частота колебаний, длина волны и скорость ее распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

· анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), I, II и III законы Ньютона, закон сохранения импульса; при этом различать словесную формулировку закона и его математическое выражение;

· различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета;

решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса,) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, сила трения скольжения, коэффициент трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины

Электрические и магнитные явления

· распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, дисперсия света.

· описывать изученные свойства тел и электромагнитные явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.

· приводить примеры практического использования физических знаний о электромагнитных явлениях

· решать задачи, используя формулы, связывающие физические величины (скорость электромагнитных волн, длина волны и частота света,): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Квантовые явления

· распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α-, β- и γ-излучения, возникновение линейчатого спектра излучения атома;

· описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

· анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;

· различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;

· приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.

Элементы астрономии

· указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;

· понимать различия между гелиоцентрической и геоцентрической системами мира;

«Основы учебно-исследовательской и проектной деятельности»

7 класс

8 класс

9 класс

ученик познакомится с понятием исследования; научится определять границы исследуемого материала для отдельных видов научного исследования

ученик научится определять специфичность исследуемого материала для отдельных видов научного исследования;обучение учителем учащегося выбору и обоснованию проблемы исследования;показ возможной многоаспектности выявляемой в материале проблемы и необходимости отбора конкретных аспектов проблемы именно для данного исследования;обучение отбору текстов, содержащих материал, который имеет отношение к проблеме исследования; обучение сопоставлению излагаемых в источниках фактов по времени их публикации и по характеру ссылок авторов на предшественников; обучение навыкам индуктивного (от наблюдения и анализа к обобщению), продуктивного (от использования исследовательской методики на одном материале к применению ее на другом материале) и дедуктивного (от идеи к ее проверке анализом материала) построения исследования. обучение тесному увязыванию вывода по этапу исследования с поставленной на этом этапе задачей.

ученик научится навыкам деления исследовательского текста по отдельным аспектам Вводной, Центральной и Заключительной частей; обучение навыкам определения цели работы для отдельного этапа исследования; обучение навыкам составления (постраничных) библиографических списков и карточных материалом как источниковедческой базы исследования под руководством учителя; обучение навыкам выделения в тексте или речевых высказываниях математических фактов, относящихся к предмету исследования; обучение навыкам представления материала этапа исследования как цепи связанных по смыслу утверждений; обучение использованию фактических доказательств высказываемых в тексте исследования суждений; обучение написанию пространного конструктивно организованного текста аналитического характера; обучение тесному увязыванию вывода по этапу исследования с фактической аргументацией по решению задачи этого этапа; обучение суммированию отдельных выводов исследования в логическое единство.

обучение навыкам выделения искомого материала из общедоступных книжных и журнальных источников, подобранных самостоятельно; определение общего характера источников исследуемого материала для отдельных видов научного исследования; обучение учителем учащегося самостоятельному выбору и обоснованию проблемы исследования; обучение отбору в текстах фактов, имеющих непосредственное отношение к проблеме исследования; обучение сопоставлению излагаемых в источниках фактов по характеру отсылок к источникам фактов и характеру приводимых комментариев; обучение учителем учащегося самостоятельной постановке цели исследования и ее оформлению в тексте работы; обучение навыкам выстраивания конкретной последовательности исследования; обучение навыкам выделения Центральной части исследовательского текста в зависимости от аспектов темы исследования; обучение навыкам определения задач исследования в связи с общей целью исследования; обучение навыкам самостоятельного составления (постраничных) библиографических списков и карточным материалов как источниковедческой базы исследования; обучение навыкам письменной фиксации и классификационной группировки физических фактов, относящихся к теме исследования; обучение навыкам представления материала этапа исследования как цепи вытекающих друг из друга утверждений; обучение использованию логических доказательств высказываемых в тексте исследования суждений; обучение написанию пространного фактически и логически аргументированного аналитического текста; обучение тесному увязыванию вывода по этапу исследования с логической аргументацией по решению задачи этого этапа; обучение представлению системы выводов исследования как закономерного следствия, вытекающего из его темы, цели и задач; обучение умению вычленять в тексте собственного исследования положений, отражающих личный вклад исследователя.

«Формирование ИКТ-компетентности обучающихся»

7 класс

8 класс

9 класс

использовать различные приёмы поиска информации в Интернете, поисковые сервисы, строить запросы для поиска информации и анализировать результаты поиска; сканировать текст и осуществлять распознавание сканированного текста;

проводить обработку цифровых фотографий с использованием возможностей специальных компьютерных инструментов, создавать презентации на основе цифровых фотографий; использовать приёмы поиска информации на персональном компьютере, в информационной среде учреждения и в образовательном пространстве

осуществлять редактирование и структурирование текста в соответствии с его смыслом средствами текстового редактора; выступать с аудио - видео - поддержкой, включая выступление перед дистанционной аудиторией; использовать различные библиотечные, в том числе электронные, каталоги для поиска необходимых книг.

различать творческую и техническую фиксацию звуков и изображений; избирательно относиться к информации в окружающем информационном пространстве, отказываться от потребления ненужной информации; использовать возможности электронной почты для информационного обмена.

осуществлять видеосъёмку и проводить монтаж отснятого материала с использованием возможностей специальных компьютерных инструментов; использовать программы звукозаписи и микрофоны; осуществлять образовательное взаимодействие в информационном пространстве образовательного учреждения (получение и выполнение заданий, получение комментариев, совершенствование своей работы, формирование портфолио); взаимодействовать в социальных сетях, работать в группе над сообщением.

«Стратегии смыслового чтения и работа с текстом»

7 класс

8 класс

9 класс

умение выполнять задания, включающие составление схем, таблиц; логично, последовательно излагать ответ на поставленный вопрос, понимать прочитанный текст; сравнивать объекты, изображенные на иллюстрациях учебника, готовить вопросы к ним; соотносить описываемые события с иллюстрациями;

извлекать из учебника и дополнительных источников необходимую информацию и обсуждать полученные сведения; самостоятельно выполнять задания в рабочих тетрадях на основе текста учебника и дополнительной литературы.

обмениваться сведениями об объекте, полученными из других источников информации; готовить сообщения на основе используемой литературы (энциклопедий, справочников, других книг, Интернета).

выполнять задания, требующие анализа содержания текста, его интерпретации и преобразования его в иные знаковые формы (таблицу, схему, конспект), приводить развернутые рассуждения, описание способов анализа и обобщения фактов, разные трактовки и выводы, которые можно сделать на основе эмпирических данных; развитие понятийного мышления.

9.ОЦЕНКА ДОСТИЖЕНИЯ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ПО ФИЗИКЕ

Критерии и нормы оценки знаний, умений и навыков обучающихся по физике

Оценка устных ответов учащихся.

Оценка 5 ставится в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий и законов, теорий, а также правильное определение физических величин, их единиц и способов измерения; правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может устанавливать связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом усвоенным при изучении других предметов.

Оценка 4 ставится в том случае, если ответ ученика удовлетворяет основным требованиям к ответу на оценку 5, но без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом, усвоенным при изучении других предметов; если учащийся допустил одну ошибку или не более двух недочетов и может исправить их самостоятельно или с небольшой помощью учителя.

Оценка 3 ставится в том случае, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики; не препятствует дальнейшему усвоению программного материала, умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул; допустил не более одной грубой и одной негрубой ошибки, не более двух-трех негрубых недочетов.

Оценка 2 ставится в том случае, если учащийся не овладел основными знаниями в соответствии с требованиями и допустил больше ошибок и недочетов, чем необходимо для оценки 3.

Оценка 1 ставится в том случае, если ученик не может ответить ни на один из поставленных вопросов.

Оценка письменных контрольных работ.

Оценка 5 ставится за работу, выполненную полностью без ошибок и недочетов.

Оценка 4 ставится за работу, выполненную полностью, но при наличии не более одной ошибки и одного недочета, не более трех недочетов.

Оценка 3 ставится за работу, выполненную на 2/3 всей работы правильно или при допущении не более одной грубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочетов, при наличии четырех-пяти недочетов.

Оценка 2 ставится за работу, в которой число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 2/3 работы.

Оценка 1 ставится за работу, невыполненную совсем или выполненную с грубыми ошибками в заданиях.

Оценка лабораторных работ.

Оценка 5 ставится в том случае, если учащийся выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасного труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления, правильно выполняет анализ погрешностей.

Оценка 4 ставится в том случае, если учащийся выполнил работу в соответствии с требованиями к оценке 5, но допустил два-три недочета, не более одной негрубой ошибки и одного недочета.

Оценка 3 ставится в том случае, если учащийся выполнил работу не полностью, но объем выполненной части таков, что позволяет получить правильные результаты и выводы, если в ходе проведения опыта и измерений были допущены ошибки.

Оценка 2 ставится в том случае, если учащийся выполнил работу не полностью и объем выполненной работы не позволяет сделать правильные выводы, вычисления; наблюдения проводились неправильно.

Оценка 1 ставится в том случае, если учащийся совсем не выполнил работу.

Во всех случаях оценка снижается, если учащийся не соблюдал требований правил безопасного труда.

Перечень ошибок.

I . Грубые ошибки.

1. Незнание определений основных понятий, законов, правил, положений теории, формул, общепринятых символов, обозначения физических величин, единицу измерения.

2. Неумение выделять в ответе главное.

3. Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы, задания или неверные объяснения хода их решения, незнание приемов решения задач, аналогичных ранее решенным в классе; ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.

5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов.

6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.

7. Неумение определить показания измерительного прибора.

8. Нарушение требований правил безопасного труда при выполнении эксперимента.

II . Негрубые ошибки.

  1. Неточности формулировок, определений, законов, теорий, вызванных неполнотой ответа основных признаков определяемого понятия. Ошибки, вызванные несоблюдением условий проведения опыта или измерений.
  2. Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем.
  3. Пропуск или неточное написание наименований единиц физических величин.
  4. Нерациональный выбор хода решения.

III . Недочеты.

1. Нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решения задач.

2. Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.

3. Отдельные погрешности в формулировке вопроса или ответа.

4. Небрежное выполнение записей, чертежей, схем, графиков.

5. Орфографические и пунктуационные ошибки

Федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от «17» декабря 2010 г. № 1897. / М-во образования и науки Рос.Федерации. - 2-е изд. - М.: Просвещение, 2013. С.13.

Реестр примерных программ является государственной информационной системой, которая ведётся на электронных носителях и функционирует в соответствии с едиными организационными, методологическими и программно-техническими принципами, обеспечивающими её совместимость и взаимодействие с иными государственными информационными системами и информационно-телекоммуникационными сетями. (Часть 10 статьи 12 Федерального закона от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации» (Собрание законодательства Российской Федерации, 2012, № 53, ст. 7598; 2013, № 19, ст. 2326).

Согласно Части 10 статьи 12 Федерального закона от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации», Примерные основные образовательные программы включаются в реестр примерных основных образовательных программ.

На данный момент в реестре размещена Примерная основная образовательная программа основного общего образования .

Планируемые результаты освоения обучающимися основной образовательной программы основного общего образования по предмету «Физика» – стр. 120;

ПООП ООО

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

1.2.5.10. Физика

Выпускник научится:

  • соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
  • понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;
  • распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;
  • ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы;

Примечание . При проведении исследования физических явлений измерительные приборы используются лишь как датчики измерения физических величин. Записи показаний прямых измерений в этом случае не требуется.

  • понимать роль эксперимента в получении научной информации;
  • проводить прямые измерения физических величин: время, расстояние, масса тела, объём, сила, температура, атмосферное давление, влажность воздуха, напряжение, сила тока, радиационный фон (с использованием дозиметра); при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений;

Примечание. Любая учебная программа должна обеспечивать овладение прямыми измерениями всех перечисленных физических величин.

  • проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
  • проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений;
  • анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения;
  • понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;
  • использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы сети Интернет.

  • осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни;
  • сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;
  • самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;
  • воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;
  • создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.

Механические явления

Выпускник научится:

  • распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического движения, свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, передача давления твердыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых тел, имеющих закрепленную ось вращения, колебательное движение, резонанс, волновое движение (звук);
  • описывать изученные свойства тел и механические явления, используя физические величины: путь, перемещение, скорость, ускорение, период обращения, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
  • анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
  • различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета;
  • решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, коэффициент трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

  • использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах; примеры использования возобновляемых источников энергии; экологических последствий исследования космического пространств;
  • различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, Архимеда и др.);
  • находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

Тепловые явления

Выпускник научится:

  • распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;
  • описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
  • анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;
  • различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;
  • приводить примеры практического использования физических знаний о тепловых явлениях;
  • решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

  • использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания, тепловых и гидроэлектростанций;
  • различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
  • находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки.

Электрические и магнитные явления

Выпускник научится:

  • распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, прямолинейное распространение света, отражение и преломление света, дисперсия света;
  • составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр);
  • использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе;
  • описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами;
  • анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.
  • приводить примеры практического использования физических знаний о электромагнитных явлениях;
  • решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

  • использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;
  • различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.);
  • использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
  • находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Квантовые явления

Выпускник научится:

  • распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α-, β- и γ-излучения, возникновение линейчатого спектра излучения атома;
  • описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
  • анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;
  • различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
  • приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.

Выпускник получит возможность научиться:

  • использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
  • соотносить энергию связи атомных ядер с дефектом массы;
  • приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования;
  • понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

  • указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;
  • понимать различия между гелиоцентрической и геоцентрической системами мира.

Выпускник получит возможность научиться:

  • указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;
  • различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой;
  • различать гипотезы о происхождении Солнечной системы.

2.2.2.10. Физика

Физическое образование в основной школе должно обеспечить формирование у обучающихся представлений о научной картине мира – важного ресурса научно-технического прогресса, ознакомление обучающихся с физическими и астрономическими явлениями, основными принципами работы механизмов, высокотехнологичных устройств и приборов, развитие компетенций в решении инженерно-технических и научно-исследовательских задач.

Освоение учебного предмета «Физика» направлено на развитие у обучающихся представлений о строении, свойствах, законах существования и движения материи, на освоение обучающимися общих законов и закономерностей природных явлений, создание условий для формирования интеллектуальных, творческих, гражданских, коммуникационных, информационных компетенций. Обучающиеся овладеют научными методами решения различных теоретических и практических задач, умениями формулировать гипотезы, конструировать, проводить эксперименты, оценивать и анализировать полученные результаты, сопоставлять их с объективными реалиями жизни.

Учебный предмет «Физика» способствует формированию у обучающихся умений безопасно использовать лабораторное оборудование, проводить естественно-научные исследования и эксперименты, анализировать полученные результаты, представлять и научно аргументировать полученные выводы.

Изучение предмета «Физика» в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов (наблюдение, измерение, эксперимент, моделирование), освоения практического применения научных знаний физики в жизни основано на межпредметных связях с предметами: «Математика», «Информатика», «Химия», «Биология», «География», «Экология», «Основы безопасности жизнедеятельности», «История», «Литература» и др.

Физика и физические методы изучения природы

Физика – наука о природе. Физические тела и явления. Наблюдение и описание физических явлений. Физический эксперимент. Моделирование явлений и объектов природы. Физические величины и их измерение. Точность и погрешность измерений. Международная система единиц. Физические законы и закономерности. Физика и техника. Научный метод познания. Роль физики в формировании естественно-научной грамотности.

Механические явления

Механическое движение. Материальная точка как модель физического тела. Относительность механического движения. Система отсчета. Физические величины, необходимые для описания движения и взаимосвязь между ними (путь, перемещение, скорость, ускорение, время движения). Равномерное и равноускоренное прямолинейное движение. Равномерное движение по окружности. Первый закон Ньютона и инерция. Масса тела. Плотность вещества. Сила. Единицы силы. Второй закон Ньютона. Третий закон Ньютона. Свободное падение тел. Сила тяжести. Закон всемирного тяготения. Сила упругости. Закон Гука. Вес тела. Невесомость. Связь между силой тяжести и массой тела. Динамометр. Равнодействующая сила. Сила трения. Трение скольжения. Трение покоя. Трение в природе и технике.

Импульс. Закон сохранения импульса. Реактивное движение. Механическая работа. Мощность. Энергия. Потенциальная и кинетическая энергия. Превращение одного вида механической энергии в другой. Закон сохранения полной механической энергии.

Простые механизмы. Условия равновесия твердого тела, имеющего закрепленную ось движения. Момент силы. Центр тяжести тела. Рычаг. Равновесие сил на рычаге. Рычаги в технике, быту и природе. Подвижные и неподвижные блоки. Равенство работ при использовании простых механизмов («Золотое правило механики»). Коэффициент полезного действия механизма.

Давление твердых тел. Единицы измерения давления. Способы изменения давления. Давление жидкостей и газов Закон Паскаля. Давление жидкости на дно и стенки сосуда. Сообщающиеся сосуды. Вес воздуха. Атмосферное давление. Измерение атмосферного давления. Опыт Торричелли. Барометр-анероид. Атмосферное давление на различных высотах. Гидравлические механизмы (пресс, насос). Давление жидкости и газа на погруженное в них тело. Архимедова сила. Плавание тел и судов Воздухоплавание.

Механические колебания. Период, частота, амплитуда колебаний. Резонанс. Механические волны в однородных средах. Длина волны. Звук как механическая волна. Громкость и высота тона звука.

Тепловые явления

Строение вещества. Атомы и молекулы. Тепловое движение атомов и молекул. Диффузия в газах, жидкостях и твердых телах. Броуновское движение. Взаимодействие (притяжение и отталкивание) молекул. Агрегатные состояния вещества. Различие в строении твердых тел, жидкостей и газов.

Тепловое равновесие. Температура. Связь температуры со скоростью хаотического движения частиц. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Теплопроводность. Конвекция. Излучение. Примеры теплопередачи в природе и технике. Количество теплоты. Удельная теплоемкость. Удельная теплота сгорания топлива. Закон сохранения и превращения энергии в механических и тепловых процессах. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования и конденсации. Влажность воздуха. Работа газа при расширении. Преобразования энергии в тепловых машинах (паровая турбина, двигатель внутреннего сгорания, реактивный двигатель). КПД тепловой машины. Экологические проблемы использования тепловых машин.

Электромагнитные явления

Электризация физических тел. Взаимодействие заряженных тел. Два рода электрических зарядов. Делимость электрического заряда. Элементарный электрический заряд. Закон сохранения электрического заряда. Проводники, полупроводники и изоляторы электричества. Электроскоп. Электрическое поле как особый вид материи. Напряженность электрического поля. Действие электрического поля на электрические заряды. Конденсатор. Энергия электрического поля конденсатора.

Электрический ток. Источники электрического тока. Электрическая цепь и ее составные части. Направление и действия электрического тока. Носители электрических зарядов в металлах. Сила тока. Электрическое напряжение. Электрическое сопротивление проводников. Единицы сопротивления.

Зависимость силы тока от напряжения. Закон Ома для участка цепи. Удельное сопротивление. Реостаты. Последовательное соединение проводников. Параллельное соединение проводников.

Работа электрического поля по перемещению электрических зарядов. Мощность электрического тока. Нагревание проводников электрическим током. Закон Джоуля – Ленца. Электрические нагревательные и осветительные приборы. Короткое замыкание.

Магнитное поле. Индукция магнитного поля. Магнитное поле тока. Опыт Эрстеда. Магнитное поле постоянных магнитов. Магнитное поле Земли. Электромагнит. Магнитное поле катушки с током. Применение электромагнитов. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Электродвигатель. Явление электромагнитной индукция. Опыты Фарадея.

Электромагнитные колебания. Колебательный контур. Электрогенератор. Переменный ток. Трансформатор. Передача электрической энергии на расстояние. Электромагнитные волны и их свойства. Принципы радиосвязи и телевидения. Влияние электромагнитных излучений на живые организмы.

Свет – электромагнитные волны

Скорость света. Источники света. Закон прямолинейного распространение света. Закон отражения света. Плоское зеркало. Закон преломления света. Линзы. Фокусное расстояние и оптическая сила линзы. Изображение предмета в зеркале и линзе. Оптические приборы. Глаз как оптическая система. Дисперсия света. Интерференция и дифракция света.

Квантовые явления

Строение атомов. Планетарная модель атома. Квантовый характер поглощения и испускания света атомами. Линейчатые спектры.

Опыты Резерфорда.

Состав атомного ядра. Протон, нейтрон и электрон. Закон Эйнштейна о пропорциональности массы и энергии. Дефект масс и энергия связи атомных ядер. Радиоактивность. Период полураспада. Альфа-излучение. Бета-излучение. Гамма-излучение. Ядерные реакции. Источники энергии Солнца и звезд. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Влияние радиоактивных излучений на живые организмы.

Строение и эволюция Вселенной

Геоцентрическая и гелиоцентрическая системы мира. Фи­зическая природа небесных тел Солнечной системы. Проис­хождение Солнечной системы. Физическая природа Солнца и звезд. Строение Вселенной. Эволюция Вселенной. Гипотеза Большого взрыва.

Примерные темы лабораторных и практических работ

Лабораторные работы (независимо от тематической принадлежности) делятся следующие типы:

  1. Проведение прямых измерений физических величин.
  2. Расчет по полученным результатам прямых измерений зависимого от них параметра (косвенные измерения).
  3. Наблюдение явлений и постановка опытов (на качественном уровне) по обнаружению факторов, влияющих на протекание данных явлений.
  4. Проверка заданных предположений (прямые измерения физических величин и сравнение заданных соотношений между ними).
  5. Знакомство с техническими устройствами и их конструирование.

Любая рабочая программа должна предусматривать выполнение лабораторных работ всех указанных типов. Выбор тематики и числа работ каждого типа зависит от особенностей рабочей программы и УМК.

Проведение прямых измерений физических величин

  1. Измерение размеров тел.
  2. Измерение размеров малых тел.
  3. Измерение массы тела.
  4. Измерение объема тела.
  5. Измерение силы.
  6. Измерение времени процесса, периода колебаний.
  7. Измерение температуры.
  8. Измерение давления воздуха в баллоне под поршнем.
  9. Измерение силы тока и его регулирование.
  10. Измерение напряжения.
  11. Измерение углов падения и преломления.
  12. Измерение фокусного расстояния линзы.
  13. Измерение радиоактивного фона.

Расчет по полученным результатам прямых измерений зависимого от них параметра (косвенные измерения)

  1. Измерение плотности вещества твердого тела.
  2. Определение коэффициента трения скольжения.
  3. Определение жесткости пружины.
  4. Определение выталкивающей силы, действующей на погруженное в жидкость тело.
  5. Определение момента силы.
  6. Измерение скорости равномерного движения.
  7. Измерение средней скорости движения.
  8. Измерение ускорения равноускоренного движения.
  9. Определение работы и мощности.
  10. Определение частоты колебаний груза на пружине и нити.
  11. Определение относительной влажности.
  12. Определение количества теплоты.
  13. Определение удельной теплоемкости.
  14. Измерение работы и мощности электрического тока.
  15. Измерение сопротивления.
  16. Определение оптической силы линзы.
  17. Исследование зависимости выталкивающей силы от объема погруженной части от плотности жидкости, ее независимости от плотности и массы тела.
  18. Исследование зависимости силы трения от характера поверхности, ее независимости от площади.

Наблюдение явлений и постановка опытов (на качественном уровне) по обнаружению факторов, влияющих на протекание данных явлений

  1. Наблюдение зависимости периода колебаний груза на нити от длины и независимости от массы.
  2. Наблюдение зависимости периода колебаний груза на пружине от массы и жесткости.
  3. Наблюдение зависимости давления газа от объема и температуры.
  4. Наблюдение зависимости температуры остывающей воды от времени.
  5. Исследование явления взаимодействия катушки с током и магнита.
  6. Исследование явления электромагнитной индукции.
  7. Наблюдение явления отражения и преломления света.
  8. Наблюдение явления дисперсии.
  9. Обнаружение зависимости сопротивления проводника от его параметров и вещества.
  10. Исследование зависимости веса тела в жидкости от объема погруженной части.
  11. Исследование зависимости одной физической величины от другой с представлением результатов в виде графика или таблицы.
  12. Исследование зависимости массы от объема.
  13. Исследование зависимости пути от времени при равноускоренном движении без начальной скорости.
  14. Исследование зависимости скорости от времени и пути при равноускоренном движении.
  15. Исследование зависимости силы трения от силы давления.
  16. Исследование зависимости деформации пружины от силы.
  17. Исследование зависимости периода колебаний груза на нити от длины.
  18. Исследование зависимости периода колебаний груза на пружине от жесткости и массы.
  19. Исследование зависимости силы тока через проводник от напряжения.
  20. Исследование зависимости силы тока через лампочку от напряжения.
  21. Исследование зависимости угла преломления от угла падения.

Проверка заданных предположений (прямые измерения физических величин и сравнение заданных соотношений между ними). Проверка гипотез

  1. Проверка гипотезы о линейной зависимости длины столбика жидкости в трубке от температуры.
  2. Проверка гипотезы о прямой пропорциональности скорости при равноускоренном движении пройденному пути.
  3. Проверка гипотезы: при последовательно включенных лампочки и проводника или двух проводников напряжения складывать нельзя (можно).
  4. Проверка правила сложения токов на двух параллельно включенных резисторов.

Знакомство с техническими устройствами и их конструирование

1. Конструирование наклонной плоскости с заданным значением КПД.

2. Конструирование ареометра и испытание его работы.

3. Сборка электрической цепи и измерение силы тока в ее различных участках.

4. Сборка электромагнита и испытание его действия.

5. Изучение электрического двигателя постоянного тока (на модели).

6. Конструирование электродвигателя.

7. Конструирование модели телескопа.

8. Конструирование модели лодки с заданной грузоподъемностью.

9. Оценка своего зрения и подбор очков.

10. Конструирование простейшего генератора.

11. Изучение свойств изображения в линзах.

Читайте также: