Апоптоз биологическое значение. Апоптоз — процесс запрограммированной гибели клеток организма. Роль каспаз в клеточной гибели

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Что такое апоптоз?

Апоптоз – физиологическая смерть клетки, представляющая собой своеобразную генетически запрограммированную самоликвидацию.

Термин "апоптоз" в переводе с греческого означает "опадающий". Авторы термина дали такое название процессу запрограммированной смерти клеток потому, что именно с ним связано осеннее опадание увядших листьев. Кроме того, само название характеризует процесс как физиологический, постепенный и абсолютно безболезненный.

У животных в качестве наиболее яркого примера апоптоза, как правило, приводят исчезновение хвоста у лягушки во время метаморфозы из головастика во взрослую особь.

По мере взросления лягушонка хвост полностью исчезает, поскольку его клетки подвергаются постепенному апоптозу – запрограммированной смерти, и поглощению деструктированных элементов другими клетками.

Явление генетически запрограммированной гибели клеток встречается у всех эукариотов (организмов, клетки которых имеют ядро). Прокариоты же (бактерии) имеют своеобразный аналог апоптоза. Можно сказать, что данный феномен характерен для всего живого, за исключением таких особых доклеточных форм жизни, как вирусы .

Апоптозу могут подвергаться как отдельные клетки (как правило, дефектные), так и целые конгломераты. Последнее особенно характерно для эмбриогенеза. К примеру, опыты исследователей доказали, что благодаря апоптозу во время эмбриогенеза исчезают перепонки между пальцами на лапках у цыплят.

Ученые утверждают, что у человека такие врожденные аномалии, как сросшиеся пальцы на руках и ногах, также возникают вследствие нарушения нормального апоптоза на ранних стадиях эмбриогенеза.

История открытия теории апоптоза

Изучение механизмов и значения генетически программируемой клеточной смерти началось еще в шестидесятых годах прошлого века. Ученых заинтересовал тот факт, что клеточный состав большинства органов на протяжении жизни организма практически одинаков, а вот жизненный цикл различных типов клеток значительно отличается. При этом происходит постоянная замена многих клеток.

Таким образом, относительное постоянство клеточного состава всех организмов поддерживается динамическим равновесием двух противоположных процессов – клеточной пролиферации (деление и рост) и физиологического отмирания отживших клеток.

Авторство термина принадлежит британским ученым – Дж. Керру, Э. Уайли и А. Керри, которые впервые выдвинули и обосновали концепцию о принципиальном различии физиологической смерти клеток (апоптоз), и их патологической гибели (некроз).

В 2002 году ученые из кембриджской лаборатории, биологи С. Бреннер, Дж. Салстон и Р. Хорвиц, получили Нобелевскую Премию по физиологии и медицине за раскрытие основных механизмов генетической регуляции развития органов и исследования программируемой клеточной смерти.

Сегодня теории апоптоза посвящены десятки тысяч научных работ, раскрывающие основные механизмы его развития на физиологическом, генетическом и биохимическом уровнях. Ведется активный поиск его регуляторов.

Особенно большой интерес представляют исследования, дающие возможность практического применения регуляции апоптоза при лечении онкологических, аутоиммунных и нейродистрофических заболеваний.

Механизм

Механизм развития апоптоза на сегодняшний день до конца не изучен. Доказано, что процесс может индуцироваться малыми концентрациями большинства веществ, вызывающих некроз.

Однако в большинстве случаев генетически запрограммированная гибель клеток происходит при поступлении сигналов от молекул – клеточных регуляторов, таких как:

  • гормоны;
  • антигены;
  • моноклональные антитела и др.
Сигналы к апоптозу воспринимаются специализированными клеточными рецепторами, которые запускают последовательные этапы внутриклеточных сложных биохимических процессов.

Характерно, что сигналом к развитию апоптоза может быть как наличие активирующих веществ, так и отсутствие некоторых соединений, препятствующих развитию запрограммированной смерти клетки.

Ответ клетки на сигнал зависит не только от его силы, но и от общего исходного состояния клетки, морфологических особенностей ее дифференцировки, стадии жизненного цикла.

Одним из базовых механизмов апоптоза на стадии его реализации является деградация ДНК, в результате чего происходит фрагментация ядра. В ответ на повреждение ДНК запускаются защитные реакции, направленные на ее восстановление.

Неудачные попытки восстановить ДНК приводят к полному энергетическому истощению клетки, что и становится непосредственной причинной ее гибели.

Механизм апоптоза - видео

Фазы и стадии

Различают три физиологические фазы апоптоза:
1. Сигнальная (активация специализированных рецепторов).
2. Эффекторная (формирование из разнородных эффекторных сигналов единого пути апоптоза, и запуск каскада сложных биохимических реакций).
3. Дегидратационная (букв. обезвоживание – гибель клетки).

Кроме того, морфологически выделяют две стадии процесса:
1. Первая стадия – преапоптоз . На этой стадии происходит уменьшение размеров клетки за счет ее сморщивания, возникают обратимые изменения в ядре (уплотнение хроматина и скопление его по периферии ядра). В случае воздействия некоторых специфических регуляторов апоптоз может быть остановлен, и клетка возобновит свою нормальную жизнедеятельность.


2. Вторая стадия – собственно апоптоз. Внутри клетки происходят грубые изменения во всех ее органеллах, однако наиболее значимые превращения развиваются в ядре и на поверхности ее внешней мембраны. Клеточная мембрана теряет ворсинки и обычную складчатость, на ее поверхности формируются пузырьки – клетка как бы кипит, и в результате распадается на так называемые апоптические тельца, поглощаемые тканевыми макрофагами и/или соседними клетками.

Морфологически определяемый процесс апоптоза занимает, как правило, от одного до трех часов.

Некроз и апоптоз клетки. Сходство и различие

Терминами некроз и апоптоз обозначают полное прекращение жизнедеятельности клетки. Однако апоптозом обозначают физиологическое отмирание, а некрозом – ее патологическую гибель.

Апоптоз является генетически запрограммированным прекращением существования, то есть по определению имеет внутреннюю причину развития, в то время как некроз происходит в результате воздействия сверхсильных внешних, по отношению к клетке, факторов:

  • недостаток питательных веществ;
  • отравление токсинами и т.п.
Для апоптоза характерна постепенность и стадийность процесса, в то время как некроз наступает более остро, и четко различить стадии практически невозможно.

Кроме того, гибель клетки при процессах некроза и апоптоза отличается морфологически – первый характеризуется её набуханием, а при втором происходит сморщивание клетки, и уплотнение ее мембран.

Во время апоптоза происходит гибель клеточных органелл, однако мембрана сохраняется в целостности, так что образуются, так называемые, апоптические тельца, которые впоследствии поглощаются специализированными клетками – макрофагами или клетками-соседями.

При некрозе происходит разрыв клеточной мембраны, и содержимое клетки выходит наружу. Начинается воспалительная реакция.

Если некрозу подверглось достаточно большое количество клеток, воспаление проявляется известными с древности характерными клиническими симптомами , такими как:

  • боль;
  • покраснение (расширение сосудов в области поражения);
  • припухлость (воспалительный отек);
  • местное, а иногда и общее повышение температуры ;
  • более или менее выраженное нарушение функции органа, в котором произошел некроз.

Биологическое значение

Биологическое значение апоптоза заключается в следующем:
1. Осуществление нормального развития организма в период эмбриогенеза.
2. Предотвращение размножения мутировавших клеток.

3. Регуляция деятельности иммунной системы.
4. Предотвращение преждевременного старения организма.

Данный процесс играет ведущую роль в эмбриогенезе, поскольку многие органы и ткани претерпевают значительные трансформации во время эмбрионального развития. Многие врожденные дефекты возникают вследствие недостаточной активности апоптоза.

Как запрограммированная самоликвидация дефектных клеток, данный процесс является мощной природной защитой против онкологических заболеваний. Так, к примеру, вирус папилломы человека блокирует клеточные рецепторы, ответственные за апоптоз и, таким образом, приводит к развитию рака шейки матки и некоторых других органов.

Благодаря данному процессу происходит физиологическая регуляция клонов Т-лимфоцитов , ответственных за клеточный иммунитет организма. Клетки, неспособные распознавать белки собственного организма (а таких в общей сложности созревает около 97%), подвергаются апоптозу.

Недостаточность апоптоза приводит к тяжелым аутоиммунным заболеваниям, в то время как его усиление возможно при иммунодефицитных состояниях. К примеру, тяжесть течения СПИДа коррелирует с усилением данного процесса у Т-лимфоцитов.

Кроме того, этот механизм имеет большое значение для функционирования нервной системы: он ответственен за нормальное формирование нейронов, и он же может вызывать раннее разрушение нервных клеток при болезни Альцгеймера .

Одна из теорий старения организма – теория апоптоза. Уже доказано, что именно он лежит в основе преждевременного старения тканей, где гибель клеток остается невосполнимой (нервная ткань, клетки миокарда). С другой стороны, недостаточный апоптоз может способствовать накоплению в организме стареющих клеток, которые в норме физиологически отмирают, и заменяются новыми (раннее старение соединительной ткани).

Роль теории апоптоза в медицине

Роль теории апоптоза в медицине заключается в возможности поиска путей регуляции этого процесса для лечения и профилактики многих патологических состояний, вызванных ослаблением или, наоборот, усилением апопоптоза.

Исследования ведутся одновременно во многих направлениях. Прежде всего, следует отметить научные изыскания в такой значимой области медицины, как онкология . Поскольку опухолевый рост вызван дефектом генетически запрограммированной гибели мутировавших клеток, изучается возможность специфической регуляции апоптоза, с повышением его активности в опухолевых клетках.

Действие некоторых химиотерапевтических препаратов, широко применяемых в онкологии, основано на усилении процессов апоптоза. Так как опухолевые клетки более склонны к данному процессу, подбирается доза вещества, достаточная для гибели патологических клеток, но относительно безвредная для нормальных.

Также чрезвычайно важны для медицины исследования, изучающие роль апоптоза в дегенерации ткани сердечной мышцы под влиянием недостаточности кровообращения. Группа китайских ученых (Lv X, Wan J, Yang J, Cheng H, Li Y, Ao Y, Peng R) опубликовала новые экспериментальные данные, которые доказывают возможность искусственного снижения апоптоза в кардиомиоцитах при введении определенных веществ-ингибиторов.

Если теоретические исследования на лабораторных объектах удастся применить в клинической практике – это будет большой шаг вперед в борьбе с ишемической болезнью сердца . Данная патология занимает первые позиции среди причин смерти во всех высокоразвитых странах, так что переход от теории к практике трудно было бы переоценить.

Еще одно весьма перспективное направление – разработка методов регуляции данного процесса для замедления старения организма. Теоретические исследования ведутся в направлении создания программы, сочетающей повышение активности апоптоза стареющих клеток, и одновременного усиления пролиферации молодых клеточных элементов. Здесь достигнуты определенные успехи на теоретическом уровне, однако до перехода от теории к практическим решениям еще далеко.

Кроме того, масштабные научные исследования проводятся в следующих направлениях:

  • аллергология;
  • иммунология;
  • терапия инфекционных заболеваний;
  • трансплантология;
Таким образом, в недалеком будущем мы станем свидетелями внедрения в практику принципиально новых медицинских препаратов, побеждающих многие заболевания.

Или уклонение от программированной клеточной смерти опухолевых клеток - важнейшее свойство злокачественного фенотипа.

В норме апоптозная программа присутствует в латентной форме во всех клетках организма, поскольку вполне очевидно, что в организме под влиянием различных факторов при прохождении клеткой клеточного цикла постоянно происходят повреждения ДНК, т.е. возникают мутации.

Известно, что в течение жизни в организме человека происходит 10 16 клеточных делений. Спонтанные мутации происходят с частотой - 10 6 на ген за клеточный цикл.

Таким образом, в течение жизни человека каждый ген вполне может подвергнуться мутированию около 10 миллиардов раз (10 16 х10 6 = 10 10), а ежедневно в организме происходит до 1 млн соматических мутаций.

И среди них, несомненно, возможны, ведущие к раку. С этих позиций проблема рака не столько в том, почему он возникает, а в том, почему он возникает так редко.

А возникает рак, несмотря на постоянное воздействие канцерогенных факторов, относительно редко потому, что в организме существуют механизмы защиты, направленные на сохранение нормального генотипа клетки. Необходимо отметить, что судьба клеток с теми или иными генетическими повреждениями может быть различной.

Часть мутированных клеток гибнет из-за витальных повреждений их генома, часть восстанавливается, часть организм уничтожает сам посредством апоптоза и, наконец, часть мутированных клеток выживет и в процессе размножения может стать источником накопления потенциально онкогенных мутаций и развития рака.

В норме генетический фонд клетки, несмотря на его хрупкость, защищен мощным ферментным аппаратом, часто обеспечивающим распознавании мутированных и измененных участков ДНК и их восстановление.

Репарация ДНК заключается в «вырезании» мутированных нуклеотидов с помощью эндо- и экзонуклеаз, синтеза нормального участка ДНК при участии ДНК-полимеразы и встраивании восстановленного участка в цепь ДНК под действием фермента лигазы. Тем самым воссоздается исходная генетически запрограммированная нуклеотидная последовательность поврежденной нити (рис. 3.12).

Рис 3.12. Схема репарации при повреждении ДНК и формирование мутации [Новик А.Л., 2004].

Если же активность репарационно-восстановительных систем недостаточна и повреждения в ДНК сохраняются, то в таких клетках индуцируется программируемая клеточная гибель, что приводит к уничтожению, в том числе и мутантных клеток, способных к злокачественной трансформации.

Апоптоз (от греч. apoptosis - опадание) - запрограммированная гибель клетки или «смерть клетки в результате самоуничтожения» - активный, генетически контролируемый процесс. Термин был предложен Kerr J. и соавт. (1972) для обозначения происходящих изменений в клетке во время ее физиологической гибели и ведущих к уменьшению числа клеток в противоположность митозу, обеспечивающему увеличение их числа.

Биологическое значение апоптоза

Биологическое значение апоптоза состоит в том, что это ключевой механизм поддержки генетического гомеостаза, который организм использует для удаления клеток, чье выживание нежелательно: чужеродных, дефектных с поломками в геноме; мутантных или зараженных вирусом; с неадекватной специфичностью рецепторов к различным регуляторам жизнедеятельности и т.д.

В организме в каждую единицу времени миллионы клеток завершают свой цикл, отрабатывают «свой век». Для предотвращения «засорения» организма от успевших выполнить свою функцию «отработанных», «изношенных» клеток в ходе эволюции выработался специальный механизм их ликвидации - апоптоз.

Способность запускать самоликвидацию (апоптоз), является неотъемлемым свойством клеток для поддержания тканевого гомеостаза путем сохранения определенного баланса между пролиферацией (митозом) и гибелью.

Апоптоз играет исключительно важную роль в эмбриогенезе, в частности в регуляции количества мезодермальной ткани при формировании органов и скелета. В основе уничтожения иммунными клетками чужеродных также лежит апоптотический механизм.

Гибель клеток по типу апоптоза происходит при многих физиологических процессах: возрастной инволюции органов (тимус), атрофии (предстательной железы после кастрации), регрессии гиперплазии нормапьном функционировании яичников и семенников и, наконец, в уничтожении мутантных клеток.

Механизм активации апоптоза

Зрелые дифференцированные клетки в обычном состоянии устойчивы к индукции апоптоза, но становятся чувствительными к нему после своей активации. Такую активацию вызывают различные внешние воздействия через специфические рецепторы и внутриклеточные сигналы, вызванные экспрессией некоторых протоонкогенов.

Они могут быть физиологическими - активация специальных киллерных цитокинов, изменения гормонального статуса (цикличное изменение эндометрия и др.), и нефизиологическими - внутриклеточные повреждения или неблагоприятные условия (нехватка факторов роста, повреждения ДНК, гипоксия и т.д.).

В механизмах активации апоптоза выделяют два основных этапа: фазу индукции (принятия решения) и фазу экзекуции (исполнения приговора). В первую фазу система сенсоров апоптоза отслеживает отклонения от нормы внутри- и внеклеточной среды и определяет дальнейшую судьбу клетки: жить ей или умереть.

Класс сенсоров представляет собой рецепторы клеточной поверхности, которые связывают сигналы выживания или смерти. В качестве таких сигналов выступают различные, цитокины.

При выявлении аномалий (например, повреждение ДНК, нехватка факторов роста, гипоксия и др.) посредством сенсорных регуляторов запускается вторая фаза апоптоза - исполнения приговора. Начинается она с активации каспаз + ферментов семейства цистеиновых протеиназ (так называемые казнящие каспазы).

Существует два принципиально разных пути активации каспаз. Один из них запускается в ответ на активный сигнал смерти, передаваемый специфическими киллерными цитокинами группы ФНО (фактор некроза опухолей) на соответствующие рецепторы (наиболее изучены Fas), называемые рецепторами смерти.

Апоптоз, вызванный активированными рецепторами смерти, называется инструктивным апоптозом. При втором пути активации каспаз ключевую роль играют митохондрии - митохондриальный апоптоз.

При этом различные повреждающие воздействия вызывают увеличение проницаемости мембраны митохондрий и выход в цитоплазму митохондриальны белков (в основном цитохрома С), которые через соответствующий каскад реакций и активируют каспазы.

Ключевую роль в регуляции проницаемости митохондриальной мембраны для цитохрома С играют белки семейства bcl-2, обладающие либо проапоптотическими, либо антиапоптотическими активностями.

Таким образом, в клетках человека в ответ на повреждения существует два механизма, запускающих апоптоз: инструктивный, вызываемый рецепторами смерти, и митохондриальный, обусловленный повышенной проницаемостью мембран. Между ними существует взаиморегуляция, что позволяет надежнее достигать конечного эффекта.

В итоге активированные тем или иным путем каспазы протеолитически расщепляют ключевые структурные компоненты клетки, что приводит к фрагментации ДНК и деструкции клетки. При этом цитоппазматический и ядерный скелеты разрушаются, хромосомы деградируют, ядро фрагментируется, но без разрыва клеточной мембраны.

Поэтому такая клетка может быть утилизирована фагоцитами и соседними клетками, и даже массовая их гибель не приводит к каким-либо патологическим процессам. Процесс протеолиза продолжается 30-120 минут, затем сморщенная клетка поглощается макрофагами и исчезает обычно в течение 24 часов (рис. 3.13).


Рис. 3.13. Фагоцитоз апоптотической клетки макрофагом [Фильченков А.А., Стойка Р.С., 1999]. 1 - фрагментированное ядро; 2 - фрагменты цитоплазмы (апоптотические тельца): 3 - фрагменты апоптотической клетки захвачены макрофагом.

Задачей апоптоза является утилизация фрагментов клетки пока ее содержимое не попало во внеклеточную среду и не вызвало воспалительного процесса. Внешние морфологические проявления апоптотической гибели клеток в виде кариопикноза (сморщивание ядра), кариорексиса (распад ядра на части), конденсации (сжатия) клетки и др. были известны давно и только в последнее время показано, что это частные проявления апоптоза. Вокруг клеток, подвергшихся апоптозу, воспалительный процесс не возникает.

Гибель клеток по типу апоптоза следует отличать от некроза - другой формы гибели клеток организма. Некроз инициируется нефизиологическими агентами, а апоптоз - и физиологическими, и нефизиологическими. В отличие от некроза, апоптоз встречается не только в патологически измененных, но и нормальных тканях.

Некроз происходит в случае, когда клетки подвергаются действию экстремальных факторов и поэтому его можно назвать патологической гибелью. При некрозе морфологические изменения как реакция на летальное повреждение клетки, почти всегда начинается с повреждения плазматической мембраны, что не бывает при апоптозе.

Из-за разрыва мембраны в клетку из внеклеточного пространства поступают молекулы воды и ионов и вызывают набухание структур. Одновременно попадание содержимого цитоплазмы (в том числе лизосомальных ферментов) во внеклеточное пространство вызывает повреждения тканей и развитие выраженного воспалительного процесса, что не происходит при апоптозе.

Кроме того, при апоптозе отмирают одиночные клетки, а при некрозе - их группы. Уничтожение клеток путем апоптоза по сравнению с некрозом обеспечивает минимальное повреждение тканей. Между этими процессами имеются и другие различия. На рисунке 3.14 схематически представлены две формы гибели клеток.


Рис. 3.14. Схематическое представление о двух формах гибели клеток [по Wyllle А. и соавт., 1998].

Как и другие физиологические процессы, апоптоз регулируется большим числом генов. Ключевая роль в запуске программы апоптоза принадлежит гену-cупpeccopy р53. Вследствие особой значимости р53 был назван геном XX века. р53 поддерживает стабильность генетического аппарата и осуществляет контроль над клеточным циклом.

В норме, при повреждениях структуры ДНК или других формах генотоксического стресса отмечается быстрая активация р53. Его белок блокирует клеточный цикл в фазе G1 до удвоения ДНК и митоза, инициирует и участвует в процессах репарации ДНК. Это позволяет клетке восстанавливать поврежденный участок ДНК, что предотвращает появление мутантных клеток.

При тяжелых неустранимых повреждениях р53 запускает программу апоптоза и тем самым предупреждает патологическую пролиферацию. Важно подчеркнуть, что р53-зависимый апоптоз элиминирует из организма не только поврежденные, но и те клетки, в которых наблюдается нерегулируемая стимуляция пролиферации.

Если р53 мутирует, он инактивируется и перестает запускать апоптозный каскад, что дает возможность сохраняться клеткам с поврежденной ДНК во время митоза, а это в свою очередь приводит к выживанию клеток, подвергшихся опухолевой трансформации (рис 3.15).


Рис. 3.15. Регулирующее влияние антионкогена р53 . Повреждение гена создает условия для патологической клеточной пролиферации.

Предполагается, что увеличение частоты неоплазии с возрастом связано не с накоплением мутаций в геноме клеток, а с возрастными нарушениями системы репарации ДНК.

Естественно, апоптоз рассматривается как мощная противоопухолевая защита. Угнетение процесса резко облегчает превращение нормальной клетки в раковую, так как в неспособных к апоптозу клетках легко будут накапливаться различные мутации.

Такие клетки-мутанты, несмотря на повреждения ДНК, будут продолжать активно размножаться. Накопление критического количества мутаций неизбежно приведет к появлению неоппастической клетки и формированию злокачественной опухоли (рис. 3.16).


Рис. 3.16. Нарушение процессов пролиферации (П) и апоптоза (А) клеток при онкогенезе [Фильченков А.А., Стойка Р.С., 1999].

Приобретенная резистентность к апоптозу является признаком большинства, если не всех опухолевых клонов. Уход от апоптоза резко повышает жизнеспособность неопластической клетки, делает ее менее чувствительной к факторам противоопухолевого иммунитета и терапевтическим воздействиям. Опухолевые клетки приобретают резистентность к апоптозу различными путями.

На сегодня установлено, что к ослаблению индукции апоптоза могут привести потеря экспрессии на поверхности клетки рецептора смерти Fas; нарушения проведения апоптогенного сигнала к митохондриям и ингибирование проницаемости митохондриальной мембраны для цитохрома С; блокирование активации и/или резкое уменьшение времени жизни казнящих каспаз.

Очевидно, наряду с белками, включающими апоптоз, есть белки, препятствующие ему, и между теми и другими существует тонкий баланс. Гены, способствующие апоптозу, относятся к генам-супрессорам (кроме р53, ВАХ, PML и др.). Гены, блокирующие работу этого защитного механизма - к протоонкогенам (BCL1, BCL2 и др.).

Последние при их активации нейтрализуют апоптозную активность и будут резко увеличивать появление постоянно пролиферирующих мутантных клеточных клонов, а, следовательно, и вероятность последующего развития из них злокачественных опухолей.

Считается, что соотношение количества различных форм онкобелков группы BCL и р53 определяет реостат жизни и смерти клетки. В связи с этим следует заметить, что вследствие существования механизма апоптоза принципиально невозможно достигнуть бессмертия организма.

С течением времени наступает атрофия клеток органов, регуляторов жизнедеятельности организма и развивается ряд заболеваний, которые объединяют общим названием -

Существует множество определений понятия "апоптоз":
- явление программируемой клеточной смерти, сопровождаемой набором характерных цитологических признаков (маркеров апоптоза) и молекулярных процессов, имеющих различия у одноклеточных и многоклеточных организмов (т.е. изменений в строении и функционировании клетки, характерных для апоптоза).
- форма гибели клетки, проявляющаяся в уменьшении ее размера, конденсации (уплотнении) и фрагментации хроматина, уплотнении наружной и цитоплазматической мембран без выхода содержимого клетки в окружающую среду.
Суть апоптоза заключается в том, что это программируемая клеточная гибель, т.е. существуют определенные механизмы, в результате реализации которых клетка сама завершает свое существование.

В многоклеточном организме апоптоз ом гибнут клетки в процессе эмбриогенеза, Т-клетки в процессе дифференцировки в тимусе, клетки, зараженные вирусами, измененные клетки (при недостаточной интенсивности апоптотических процессов развиваются онкологические заболевания) и мн. др.Основное биологическое назначение апоптоз а состоит в том, чтобы в процессе эмбрионального морфонегеза создавать органы и ткани с эволюционно закрепленными конфигурациями и размерами и затем поддерживать эти параметры с допустимыми допусками в течение жизни.


Важнейшим проявлением этой функции апоптоз а после окончания развития человека и других млекопитающих является его участие в процессе физиологической регенерации (обновления) клеток разных тканей и органов и поддержании клеточного гомеостаза. Регенерации в разной степени выраженности на протяжении всей жизни подвержены практически все клетки нашего организма. Особенно интенсивно клеточное обновление протекает в клетках эпителия, соприкасающихся с внешней средой, кожи, желудочно-кишечного тракта, мочеполовой и легочной систем, а также в клетках крови, иммунной системы.


Важна роль и в процессах отторжения чужеродных органов и тканей при их трансплантации.


Другой важнейшей функцией апоптоз а является контроль за внутренней средой клетки, в том числе клеточного ядра с его содержимым. Правда, сейчас показано, что апоптоз может протекать и в клетках, лишенных ядра. При возникновении в клетке нарушений, превышающие допустимые пределы, клетка подвергается самоуничтожению. Апоптоз возникает при действии различных повреждающих факторов, которые способны вызвать некроз, но действующих в небольших дозах, например, при действии высокой температуры, ионизирующего излучения, противоопухолевых препаратов.


Апоптоз принимает активное участие в ряде физиологических и патологических процессов. Например, при гормон-зависимой инволюции органов у взрослых, в частности, отторжение эндометрия во время менструального цикла, атрезии (заращении) фолликулов в яичниках в менопаузе и регрессии (обратном развитии) молочной железы после прекращения лактации.


Велика роль апоптоз а и при патологической атрофии гормон-зависимых органов, например, атрофии предстательной железы после кастрации и истощении лимфоцитов в тимусе при терапии глюкокортикоидами. Или патологической атрофии паренхиматозных органов после обтурации (закупорки) выводных протоков, что наблюдается в поджелудочной и слюнных железах, почках. Гибель клеток в процессе атрофии наблюдается и в коре надпочечников при воздействии глюкокортикоидов или при атрофии эндокрин-зависимых тканей.


Во многих случаях острого или хронического ишемического либо токсического воздействия гибель клеток происходит через апоптоз . Такая картина наблюдается при инсульте, инфаркте не только миокарда, но и в почках, при диабете, отдельных формах нефрита, нейродегенеративных заболеваниях, таких как болезнь Альцгеймера и Паркинсона. В патогенезе токсических повреждений печени, поджелудочной железы и почек активация апоптоз а также имеет важное значение.

Формы клеточной гибели, их различия

Существует две формы гибели клетки - некроз и апоптоз .
Некроз - это патологический процесс, выражающийся в местной гибели ткани в живом организме в результате какого-либо экзо- (внешнего) или эндогенного (внутреннего) ее повреждения. Некроз проявляется в набухании, денатурации и коагуляции (слипании) цитоплазматических белков, разрушении клеточных органелл и, наконец, всей клетки.
Главное отличие некроза и апоптоз а состоит в том, что апоптоз - это программируемая гибель клетки, а некроз - это патологический процесс, запускающийся в ответ на какое-либо повреждающее воздействие (инфекция, химическое воздействие, облучение, недостаточное кровоснабжение и т.д.).


В процессе апоптоз а в клетке задействованы сложные молекулярные каскады, в результате реализации которых происходит сморщивание цитоплазматической мембраны, уменьшение объёма клетки, разрывы нитей ядерной ДНК, конденсация хроматина по периферии ядра, последующий распад ядра на части, фрагментация клеток на везикулы (пузырьки) с внутриклеточным содержимым - апоптотические тельца, которые захватываются соседними клетками, могут и фагоцитами, как в случае некроза. Выброса клеточного содержимого не происходит, воспаления не возникает.

При некрозе, наоборот, происходит выход лизосомальных ферментов из лизосом, которые и переваривают содержимое клетки, клетка набухает и лопается. Содержимое клетки выбрасывается во внеклеточную среду, где поглощается фагоцитами, развивается воспаление.
Апоптоз- это физиологический процесс, некроз- патологический.
Существуют и другие формы программируемой гибели, например, аутофагия . Процесс аутофагии заключается в том, что органеллы соединяются с лизосомами, где перевариваются лизосомальными ферментами. Затем остатки клетки поглощают макрофаги .

а) - Кинетическая модель баланса апоптоз а и аутофагии. Одно из летальных воздействий активирует в клетке программу и клетка "решает умереть". Если достаточно апоптотических эффекторов (молекул, задействованных в процессе апоптоз а), то апоптоз является единственным ответом большинства клеток на летальное воздействие. Подавление апоптотических эффекторов запускает альтернативный путь- аутофагию.
b) - Ингибиторная модель. Когда летальное воздействие активирует BAX/BAK- зависимый митохондриальный внемембранный путь (BAX/BAK-dependent mitochondrial outer-membrane permeabilization pathway) запускается апоптоз . BAX/BAK, так же как и каспазы, является активным ингибитором BCL2/BCL-XL, облегчающего аутофагию. Активный апоптоз подавляет аутофагию.


3D модель апоптоза

Апоптоз под микроскопом

Механизмы апоптоза

Механизмы апоптоз а сложны и многообразны, представляют собой сложнейший молекулярный каскад, изучением которого занимаются многие и многие лаборатории по всему миру. Несомненная важность этих исследований в аспекте онкологии и геронтологии доказана успехами терапии онкологических заболеваний индукторами апоптоз а раковых клеток. Так каковы же механизмы. Поговорим об этом по-подробнее.


Первый этап - смертельный приказ

С чего же начинается этот сложный процесс? С того, что клетка получает "приказ умереть", ее гибель необходима для дальнейшей жизнедеятельности организма. Это происходит с помощью сигналов из внеклеточной среды, которые клетка воспринимает с помощью своего рецепторного аппарата. Иногда сигналом для начала апоптоз а может быть и отсутствие необходимого сигнала.
В результате контакта сигнальных молекул с наружной частью белка-рецептора этот рецептор претерпевает структурные изменения. Структурная перестройка захватывает и внутриклеточную часть молекулы рецептора. Она может либо обладать определенной ферментативной активностью сама, либо быть тесно связана с некоторыми клеточными ферментами. Изменение активности рецепторной молекулы приводит к активации фермента.
Часто речь идет об изменении концентрации ионов кальция, а также некоторых относительно мелких фосфорсодержащих органических соединений, относящихся к классу нуклеотидов.
Активные соединения появляются и в результате гидролиза определенных липидов клеточной мембраны. В свою очередь, все это ведет к присоединению или отсоединению остатков фосфата от молекул белковых регуляторов (фосфорилирование), способных влиять на генетический аппарат клетки.
Фосфорилирование и дефосфорилирование (отщепление остатка фосфорной кислоты), а также некоторые другие биохимические модификации меняют активность этих регуляторов.


Рецепторы, воспринимающие "летальный сигнал"

Известны два структурно гомологичных рецептора TNF , р55 и р75 (TNF-RI и TNF-RII , соответственно), относящиеся к трансмембранным белкам I типа. Кроме этого задействованы "рецепторы смерти" CD95 . Рецепторы CD95 и рецепторы TNF принадлежат к растущему суперсемейству рецепторов, имеющих гомологию в экстраклеточных доменах. Семейство включает в себя также рецептор фактора роста нервов, В-клеточный антиген CD40 , маркер активации Т-лимфоцитов CD27 и некоторые гомологичные белки млекопитающих и вирусов.
CD95 и TNF-R1 имеют дополнительную гомологичную последовательность во внутриклеточной части молекул. Этот трансдукции цитотоксического (повреждающего клетку) сигнала. Цитоплазматический С-конец CD95 содержит также "домен спасения" , удаление которого усиливает цитотоксическую активность рецептора.

TNF и лиганд CD95 (CD95-L) являются трансмембранными белками второго типа с внеклеточным С-концевым, внутриклеточным N-концевым и одним трансмембранным элементами, но они могут функционировать и в растворимой, "слущенной" с мембраны форме. И CD95-L, и TNF связываются с соответствующим рецепторами в виде тримера, "сшивают" 3 молекулы рецептора, что активирует его для передачи проапоптотического сигнала.
Интенсивные исследования сигнальных механизмов апоптоз а, индуцированного антителами к CD95/CD95-L и TNF, привели к значительному прогрессу в двух направлениях - идентификация белков, взаимодействующих с CD95 и TNF-R1, и выяснение участия в процессе вторичного мессенджера церамида.
"Домен смерти" TNF-R1 взаимодействует также с серин/треониновой протеинкиназой и фосфорилируется этим ферментом. 30 С-концевых аминокислотных остатков ингибируют связывание рецептора с протеинкиназой. Роль этих событий в передаче цитотоксического сигнала неясна. Недавно описана тирозиновая фосфатаза, FAP-1 , взаимодействующая с 15 С-концевыми аминокислотами CD95, "доменом спасения". Гиперэкспрессия FAP-1 подавляет апоптоз , опосредованный CD95.
Описанные белки участвуют, по-видимому, в начальных этапах передачи сигнала. Другая группа данных свидетельствует о том, что и CD95-L или антитела к CD95, и TNF активируют сфингомиелиновый путь передачи.
Поздние этапы клеточной гибели, индуцированной через CD95 и TNF-R1, таковы же, как при классическом апоптоз е. Гибель клеток может быть предотвращена crmA , что указывает на участие ICE-подобных протеаз. Bcl-2 подавляет апоптоз , индуцированный через CD95 и TNF-R1, по крайней мере на некоторых клеточных линиях.


Участие FAS (CD95)

Этот путь передачи летального сигнала схематически можно изобразить следующим образом: индукторы - рецепторы - адаптеры -каспазы первого эшелона -регуляторы -каспазы второго эшелона. Так, рецептор, обозначаемый Fas, взаимодействуя с соответствующим лигандом (лигандом FasL), трансмембранным белком Т-киллера, активируется и запускает программу смерти клетки, инфицированной вирусом. Тем же путем при взаимодействии с лигандом FasL на поверхности Тh1-лимфоцитов или с антителом к Fas-рецептору погибают ставшие ненужными выздоровевшему организму В-лимфоциты, продуценты антител, несущие Fas-рецептор. FasL– лиганд, относящийся к многочисленному семейству фактора некроза опухолей TNF. Это семейство гомотримерных лигандов (т.е. биологически активных веществ (белков), состоящих из 3 одинаковых доменов (частей), кроме FasL и TNFa , включает TNFb (лимфотоксин).

Fas – член семейства рецепторов TNF. Как говорилось выше, все они представлены трансмембранными белками, которые внеклеточными участками взаимодействуют с тримерами лигандов-индукторов. Взаимодействие рецептора и лиганда приводит к образованию кластеров рецепторных молекул и связыванию их внутриклеточных участков с адаптерами. Адаптер, связавшись с рецептором, вступает во взаимодействие с эффекторами, пока еще неактивными предшественниками протеаз из семейства каспаз первого эшелона (инициирующих каспаз).
Взаимодействие адаптера с рецептором и эффектором осуществляется через гомофильные белок-белковые взаимодействия небольших доменов: DD (death domain – домен смерти), DED (death-effector domain – домен эффектора смерти), CARD (– домен активации и рекрутирования каспазы). Все они имеют сходную структуру, содержат по шесть a-спиральных участков. Домены DD(домен смерти) участвуют во взаимодействии рецептора Fas c адаптером FADD (Fas-associated DD-protein). Домены DED участвуют во взаимодействии адаптера FADD с прокаспазами 8 и 10.

Наиболее подробно охарактеризована прокаспаза-8, рекрутируемая рецептором Fas через адаптeр FADD. Образуются агрегаты FasL – Fas – FADD – прокаспаза-8. Подобные агрегаты, в которых происходит активация каспаз, названы апоптосомами , апоптоз ными шаперонами , или сигнальными комплексами, индуцирующими смерть .
Прокаспазы обладают незначительной протеолитической активностью, составляющей 1–2% активности зрелой каспазы. Будучи в мономерной форме, прокаспазы, концентрация которых в клетке ничтожна, находятся в латентном состоянии. Предполагается, что пространственное сближение молекул прокaспаз при их агрегации ведет к образованию активных каспаз через механизм протеолитического само- и перекрестного расщепления (ауто- или транс-процессинга)]. В результате от прокаспазы (молекулярная масса 30–50 кДа) отделяется регуляторный N-концевой домен (продомен), а оставшаяся часть молекулы разделяется на большую (~20 кДа) и малую (~10 кДа) субъединицы (рис. 3). Затем происходит ассоциация большой и малой субъединиц. Два гетеродимера образуют тетрамер с двумя каталитическими участками, действующими независимо друг от друга. Таким образом прокаспаза-8 активируется и высвобождается в цитоплазму в виде каспазы-8. Существуют другие пути активации каспазы-8 – с участием рецепторов TNFR1 и DR3.
На этапе активации каспаз первого эшелона жизнь клетки еще можно сохранить. Существуют регуляторы, которые блокируют или, напротив, усиливают разрушительное действие каспаз первого эшелона. К ним относятся белки Bcl-2 (ингибиторы апоптоз а: A1, Bcl-2, Bcl-W, Bcl-XL, Brag-1, Mcl-1 и NR13) и Bax (промоторы апоптоз а: Bad, Bak, Bax, Bcl-XS, Bid, Bik, Bim, Hrk, Mtd). Эти белки эволюционно консервативны: гомолог Bcl-2 обнаружен даже у губок, у которых апоптоз необходим для морфогенеза.
Каспаза-8 активирует каспазу второго эшелона (эффекторную каспазу): путем протеолиза из прокаспазы-3 образуется каспаза-3, после чего процесс, запущенный программой смерти, оказывается необратимым.
Каспаза-3 способна в дальнейшем к самостоятельной активации (автокатализу или автопроцессингу), активирует ряд других протеаз семейства каспаз, активирует фактор фрагментации ДНК, ведет к необратимому распаду ДНК на нуклеосомальные фрагменты. Так запускается каскад протеолитических ферментов, осуществляющих апоптоз.

tagPlaceholder Тэги: наука

Олег Чагин

Наши клетки — склонны к самоубийству

Более того, они могут покончить с собой по малейшему поводу: перегрев, радиационное облучение, гипоксия... У них даже есть свои антидепрессанты!

Клетки всё время получают сигнал от других клеток: «живи-живи-живи» и прерывание его сразу приводит к смерти.
Но иногда от «соседей» поступает совсем другое послание.

Клетки внимательно следят друг за другом, и при неадекватном поведении посылают сигнал апоптоза — запрограммированной смерти.

Биологическая клетка — это сложный и крайне интересный объект, по сути своей она является целым организмом, который рождается, дышит, питается, размножается и умирает.

Но это не удивительно, ведь огромная часть живых существ на нашей планете состоят только из одной клетки.

Стоит отличать апоптоз от некроза, который является гибелью клеток в результате травмы и повреждения.


Основное отличие — при апоптозе, которые не происходит случайно, из остатков клеток образуются апоптические тела, которые поедаются вызванными для этого фагоцитами, что препятствует воспалению и отравлению соседних клеток, а при некрозе происходит отмирание клеток и целых тканей, сопровождающееся сильным воспалением.

Интересный факт, что термин «апоптоз» означал опадание лепестков и листьев у растений (др.-греч. ἀπόπτωσις — опадание листьев).

Условно можно выделить три стадии апоптоза: инициация или получение сигнала, эффекторная стадия, в которой запускаются процессы деградации и, собственно, процесс разрушения и деградация — формирование апоптических тел с последующим поеданием макрофагами.

Выделяют 2 пути инициации: митохондриальный и внешний сигнал

Митохондрии — энергетические станции нашего организма, там собственно и происходит процесс клеточного дыхания с превращением кислорода в воду.

В школьных учебниках митохондрии изображались как такие вытянутые овалы разбросанные по всех клетке. Но это не совсем так.

Если посмотреть на срез клетки, то вы действительно увидите такую картину, но при трехмерной реконструкции клеток по этим тонким срезам ученые обнаружили, что митохондирия в клетке всего одна, но она имеет сложную изогнутую структуру, поэтому на срезах мы видим различные ее выросты.

Митохондрии окружены двумя клеточными мембранами и между ними находятся белки апоптоза или апоптические белки, которые вырываются на свободу при разрыве внешней мембраны или формировании в ней пор.

Собственно это и является ключевой фазой начала апоптоза.

Освободившиеся белки через ряд биохимических реакций активируют каспазы — ферменты, которые разрушают другие белки.

Каспазы начинаю крушить все вокруг себя, разрушая все основные клеточные структуры.

В процессе разрушения митохондриальной мембраны не только высвобождаются белки, но и вода начинает активно поступать в митохондрию, вызывая ее разбухание.

Второй путь начала апоптоза — сигнальный.

На поверхности клеток есть рецепторы клеточной гибели, специальные лиганды, продуцируемые другими клетками (части это бывают активированные макрофаги, которые позже и подъедают остатки), связываются с этими лигандами и активируют их.

Рецепторы представляют собой большую молекулу, которая сидит в клеточной мембране и выступает с обоих сторон: внутрь клетки и наружу.

С наружной стороны садится лиганд и по всему рецептору передается сигнал на внутреннюю сторону.

На второй стадии апоптоза — эффекторной, уже не так важно как клетка получила сигнал.

На этой стадии внутри начинается настоящий апокалипсис и главную роль в нем играют каспазы

Второй важный элемент этой стадии — флавопротеин AIF, который выходит из митохондрий и активируют эндонуклеазы — белки, которые разрушают ДНК клетки.

Фактически, после этой стации клетка представляет собой город после ядерной бомбежки.

Во время разрушения митохондриальной мембраны также высвобождается весь энергетический комплекс, который провоцируют образование активных форм кислорода внутри клетки.

Свободные радикалы запускают цепные реакции, которые способствуют разрушению содержимого клетки.

В этот момент их уже нельзя сдержать антиоксидантами.

После этого начинается третья и последняя стадия — деградация.

Клетка теряет свою форму и сжимается из-за разрушения клеточного скелета.

Вокруг умирающей клетки уже дежурят макрофаги, готовые набросится на останки.

В процессе клетки, на поверхности мембраны появляются сигнальные белки, которые привлекают голодных макрофагов и вот, они уже поглощают останки погибшего сородича.

Но и у клеток есть антидепрессанты, которые держат эти процессы под контролем не давая среагировать на малейший стресс — это ингибиторы апоптических белков.

Но, как только мембрана митохондрий начинает выпускать предшественников апокалипсиса, на волю вырывается и белок SMAC, который деактивируют эти ингибиторы и они становятся бесполезны.

После этой стадии апоптоз уже сложно остановить.

Не стоит думать, что апоптоз — исключительно мрачно-негативное явление нашего организма.

С помощью апоптоза поддерживается правильное количество и соотношение различных клеток в организме

Апоптоз играет далеко не последнюю роль в нашем развитии: например, разделение пальцев на руках и ногах является следствием запрограммированной гибели клеток.

При прорезании зубов у детей еще до того, как появится зуб, начинается процесс гибели клеток десны, чтобы зубу было легко выйти.

Хвост у головастиков также не отваливается с появлением ног, а деградирует с помощью того же явления.

Апоптоз незаменим при предотвращении развития раковых опухолей.

Во время нашей обычной жизни огромное количество клеток в организме претерпевают патологические изменения и перерождаются в потенциально раковые клетки.

Соседние клетки, как и бабушки на скамейки около подъезда, внимательно следят за своими соседями и при неадекватном поведении посылают клетке сигнал апоптоза еще до того, как она размножится и станет опасна.

Собственно по этой причине за последние 20 лет сильно возрос интерес к апоптозу, как средству для предотвращения и борьбы со злокачественными опухолями.

13195 0

Апоптозом (от греч. apoptosis — опадание) названо явление программируемой гибели клетки, сопровождаемой набором характерных цитологических признаков (маркёров апоптоза) и молекулярных процессов. Термин введён А. Керром с соавторами (Kerretal, 1972). Принципиальным отличием апоптоза от некроза является то, что первый сопровождается характерным каскадом реакций процесса элиминации клетки, а некроз есть результат незапланированного события и происходит спонтанно (Harmonetal., 1998) (рис. 1).

Рис. 1. Схема ультраструктурных изменений клетки при апоптозе и некрозе, предложенная лабораторией специальной микроскопии Донецкого ГМУ

Характерный каскад процессов при апоптозе включает: (а) конденсацию хроматина, (б) разрушение ядра, (в) вспучивание плазматической мембраны, (г) фрагментацию клетки с образованием дискретных апоптозных тел (АпТ). Апоптоз может быть вызван как внешними воздействиями (например, ядами), так и внутриклеточными сигналами, включая активацию «генов смерти». При этом механизмы апоптоза могут быть не только запрограммированными, но и спонтанными (Фильченков, Стойка, 1999).

Апоптоз в эволюции появился, по-видимому, вместе с появлением эукариотных многоклеточных организмов для регуляции численности клеток и установления между клетками в организме определенных взаимоотношений. Клетки взаимодействуют на разных стадиях жизненного цикла, например, при делении, росте, дифференцировке и гибели. Исследование молекулярных механизмов гибели (запрограммированной?) клетки стало в последние годы одной из самых трудных и актуальных проблем биологии.

Проблема апоптоза в настоящее время вызывает повышенный интерес со стороны специалистов разных научных дисциплин. Активацией апоптоза объясняют протекание СПИД, заболеваний локомоторного аппарата, нервной системы, болезней Вильсона, Паркинсона, Альцхаймера и Гетчинсона (прогерия , преждевременное старение). Вероятно, по механизму апоптоза отмирают клетки при ишемии мозга и инсульте, а также при анемиях (Белушкина, Белецкий, 2004).

В здоровом организме в норме в разных процессах также происходит удаление клеток путем апоптоза. Например, при росте и развитии организма. В процессе развития ЦНС нейронов образуется больше, чем необходимо, лишние удаляются. Апоптоз необходим также для реализации иммунного ответа. Один из механизмов защиты предполагает существенное увеличение количества лимфоцитов, которые при внедрении чужеродных микроорганизмов продуцируют антитела. После уничтожения этих микроорганизмов большинство таких специфических клеток соединительной ткани уничтожаются; таким образом, механизм удаления ненужных клеток необходим для выживания организма.

Этот механизм действует также при атрофии клеток под действием цитокинов (фактор некроза опухоли), при вирусных заболеваниях (например, при синдроме приобретенного иммунодефицита — СПИД), при нейрогенеративных заболеваниях. Недостаток апоптоза приводит к раку и другим опухолям; его избыток приводит к потере клеток. В молодом возрасте апоптоз является полезным, в дальнейшем он участвует в процессах старения.

Определены некоторые признаки апоптоза, отличающие его от некроза:

  • фосфатидилсерин из внутреннего слоя цитоплазматической мембраны перемещается в наружный;
  • цитохром с из межмембранного пространства митохондрий выходит в цитоплазму; активируются цистеиновые протеиназы (каспазы );
  • увеличивается образование активных форм кислорода (АФК); цитоплазматическая мембрана сморщивается, а объем клетки уменьшается;
  • нити ядерной ДНК в межнуклеосомных участках разрываются, хроматин конденсируется по периферии ядра, которое затем распадается на части;
  • клетки фрагментируются на везикулы с внутриклеточным содержимым (апоптотические тельца ). В отличие от некроза, в случае апоптоза целостность цитоплазматической мембраны сохраняется до поздних стадий процесса, несмотря на сморщивание.

Выявлены некоторые молекулярные процессы, наблюдаемые при апоптозе:

1) действие Са 2 + и Zn 2 + (главных неорганических мессенджера и гормона , соответственно), имеющее взаимно антагонистический характер,

2) изменение мембранных белков в апоптотических клетках,

3) активирование разных путей передачи сигнала для апоптоза.

При апоптозе изменяются мембраны, в частности, гликопротеины и гликолипиды теряют сиаловую кислоту , а на клеточной поверхности увеличивается количество рецептора витронектина и, как указывалось выше, фосфатидилсерина — факторов, привлекающих макрофаги.

При апоптозе активируются разные изоформы фосфолипазы с, затем образуются вторичные мессенджеры диацилглицерин (DAG) и инозит-1,4,5-трифосфат (IP3). DAG активирует семейство сериновых и треониновых киназ (протеинкиназа с), a IP3 стимулирует освобождение Са 2 + из внутриклеточных депо в цитозоль. Вызывать апоптоз могут также тирозинкиназы и некоторые токсины , нарушающие гомеостаз Са .

Предложена гипотеза о существовании генетической программы самоуничтожения митохондрий, клетки, органа, организма, соответственно — митоптоз, апоптоз, органоптоз, феноптоз . Эта программа названа «самурайским законом биологии» (В.П. Скулачев, 1996). При апоптозе в клетке образуется специфический «белок самоубийства» р53 , который способствует реализации этой программы. Активация этого белка некоторыми интерферонами даёт эффект при лечении рака . В настоящее время проблему апоптоза исследуют весьма активно, так как она связана с решением проблемы старения. Если бы удалось регулировать апоптоз, можно было бы замедлить старение человека.

Исходя из гипотезы, что запуск программы самоуничтожения начинается вследствие снижения активности антиокислительной системы (АО С) в митохондриях и накопления в них активных форм кислорода (АФК), был предложен путь борьбы с этим явлением путем внедрения в органеллы клеток веществ с антиокислительными свойствами.

Однако действие известных естественных антиокислителей, в частности, витаминов С и Е, к успеху не приводило. Поэтому синтезировали вещества со свойствами АОС. После многочисленных испытаний оказалось, что оптимальным для этой цели являются фенилфосфониевые катионы (ФФК). Из них было синтезировано вещество, названное «ионом Скулачева» (SkQ). Он представляет собой комплексное соединение тетрафенилфосфониевого катиона , где ионом-комплексообразователем является Р(III) (рис. 2). Такая структура имеет делокализованный положительный заряд.

Рис. 2. Ион Скулачева — трифенилфосфин, связанный деканом с пластохиноном.

Видно, что SkQ алкилирован деканом C 10 H 22 образованием поляризованной молекулы с положительно заряженной головкой иона и липофильным хвостом. Этот комплекс легко проникает в клетку через отрицательно заряженную плазматическую мембрану в цитоплазму и через еще более отрицательно заряженную митохондриальную мембрану в матрикс органеллы и накапливается там, предположительно, в результате простого взаимного притяжения разноименных зарядов по физическим законам. Пластохинон, по мнению авторов, увеличивает антиоксидантную активность иона.

Точечное воздействие даже при наноконцентрациях позволяет этому комплексу длительно находиться внутри митохондрий (до 4-суток). Ферменты, находясь в эндоплазматическом ретикулуме (ЭР), не могут разрушить этот комплекс внутри митохондрий, поскольку неспособны преодолеть мембранный барьер.

Скулачев полагает, что антиокислительные свойства иона SkQ, позволяют нейтрализовать свободные радикалы внутри митохондрий и тем самым оказывают положительное фармакологическое действие, активируя АО С. Однако такое объяснение совсем не учитывает твердо установленное влияние на процессы апоптоза ионов металлов, в частности, Са 2 + и Zn 2 + , и законы межэлементных взаимодействий, в частности, их антагонизм.

С точки зрения бионеорганики механизм процессов апоптоза и влияния на них фенилфосфониевых катионов более сложен. В соответствие со следствием закона замещения , «свободный» Са вытесняет ионы переходных металлов из комплексов с белками и нуклеопротеинами, нарушая их функционирование и вызывая полимикроэлементоз . Избыток Са 2 + вытесняет Mg 2 + , инактивируя все обменные процессы, связанные с АТФ. В первую очередь это проявляется в снижении активности натриевого насоса и, следовательно, мембранного потенциала (Ψ) и зависящих от него процессов нейтрализации свободных радикалов. Из-за вытеснения из ферментов АОС ионов металлов-комплексообразователей (Fe, Си, Se, Zn ) активность этих ферментов по определению снижается.

Поскольку основные ферменты АОС (каталаза, пероксидаза, цитохромоксидаза, глутатионпероксидаза) содержат гемин с Fe, Си , а селенопротеины — Se и I , избыток Са 2 + в цитоплазме автоматически приводит к резкому снижению антиокислительной активности без участия каких-либо генов. При преодолении фракционного порога начинается цепная реакция , то есть в каждом атоме с неспаренным электроном появляется свободный радикал. Запускается цепь превращений уже существующих валентнонасыщенных исходных молекул в более реакционноспособные продукты. Причем процессы апоптоза начинаются с нарушения деятельности мембран, вероятно, каким-то образом связанного с синтезом коллагена.

«Свободный» Са 2 + играет на начальных стадиях развития апоптоза ключевую роль, поскольку является инициатором цепной реакции. Его концентрация при апоптозе в клетках всегда увеличивается. «Свободный» Са цитотоксичен, он нарушает многие процессы метаболизма. В частности, в результате активируются эндонуклеаза , расщепляющая ДНК во внутренних участках нуклеосом, и тканевая трансглутаминаза , ковалентно связывающая белки с мембраной изопептидными связями. Понятно, что при этом нарушается функционирование и нуклеопротеинов, и мембран.

Zn 2 + , в соответствии с законом замещения , будучи ионом непереходного металла 4 периода, образующим комплексы с биолигандами с наибольшими К уст, способен снижать концентрацию Са в клетках и, следовательно, отдалять начало апоптоза. Поэтому его считают ингибитором этого процесса, подавляющим, в частности, активность эндонуклеазы и трансглутаминазы. Отмеченное всеми исследователями апоптоза замедление процесса гибели клеток при поступлении в них Zn 2 + объясняется тем, что содержание «свободного» Са 2 + в цитоплазме клеток уменьшается, а активность АОС возрастает. Поэтому можно полагать, что любое воздействие, снижающее фракцию «свободного» Са 2 + в клетке и её органеллах, будет замедлять процессы старения и оказывать положительный фармакологический эффект при заболеваниях, сопровождаемых накоплением этой фракции. Среди таких заболеваний можно назвать болезни глаз, остеопороз, прогерию и болезнь Дауна .

Механизм цепной реакции , как и его особенности, хорошо известны на примере атомной бомбы. Характерным свойством этой реакции является её многостадийностъ . Среди важнейших стадий — зарождение цепи (инициирование ), продолжение цепи (зарождение новых активных частиц = радикалов), обрыв цепи («гибель » активных частиц). Сами цепи могут быть неразветвленными , когда на каждую израсходованную активную частицу приходится одна вновь образованная, или разветвленными , когда на одну израсходованную активную частицу приходится две и более вновь образованных.

Разветвленные цепные реакции могут происходить в стационарном режиме, когда скорость разветвления меньше скорости гибели активных частиц, и в нестационарном , когда гибель происходит медленнее, чем разветвление. В этом случае скорость реакции возрастает по экспоненте и лимитируется только расходованием исходных веществ. Причем переход от стационарного к нестационарному режиму происходит скачкообразно при очень небольшом изменении концентрации одного из исходных веществ — наблюдается цепной «взрыв».

Цепные реакции отличаются очень эффективным изменением их свойств, и даже направленности, при наличии ничтожных примесей веществ, способных выводить из системы активные частицы, то есть ингибиторов , или, напротив, облегчать их формирование — инициаторов . Именно по такому механизму, многостадийно и очень медленно на первых стадиях, развивается процесс апоптоза. Следовательно, при рассмотрении этой проблемы надо исходить из общих закономерностей, а не частных, связанных с «генами смерти» или «борьбой» со свободными радикалами. Именно по этой причине антиокислительные витамины Е и С не оказывают существенного воздействия на процессы апоптоза, так как воздействуют не на причину цепной реакции, а на её следствие.

Р (III) в SkQ, являясь комплексообразователем, не способен многократно изменять свою валентность — что совершенно необходимо для процесса переноса электронов, происходящего в АОС. В то же время известно, что P (V), образуемый при окислении Р (III), является компонентом кислородных кислот, в частности фосфорной кислоты, которая легко связывается с Са 2 + , образуя трифосфат Ca 3 (P 3 O 10) 2 . Анион с пятивалентным фосфором в этом соединении является секвестрирующим агентом , а образовавшаяся соль устойчива, что выводит Са 2 + из «свободной» фракции.

С точки зрения бионеорганики фенилфосфониевые катионы, в случае их попадания внутрь клеток и митохондрий, служат эффективным источником активного фосфора для нейтрализации избытка «свободного» Са 2 + . То есть они, как и Zn 2 + , оказываются ингибитором цепной реакции апоптоза, но с иным механизмом действия.

Описанным механизмом апоптоза объясняется, в частности, факт продления жизни атлантического лосося при заражении жабр личинками двустворчатого моллюска жемчужницы Margarititera margarititera . Эти личинки усиленно поглощают «свободный» Са 2 + для построения своей раковины, то есть в данном случае оказываются секвестрирующим агентом в цепной реакции начавшегося полимикроэлементоза, блокируя эту реакцию.

Альбатрос живет около 50 лет, и в течение его жизни признаков старения, в том числе репродуктивной функции, не появляется, после чего птица неожиданно умирает от спонтанного «взрывного» ускорения процессов апоптоза. Это объясняется тем, что согласно правилу фракционного порога , в некоторый момент возрастающая концентрация «свободного» Са 2+ преодолевает такой порог, наступает нестационарная стадия цепной реакции, приводящая к быстрому финалу — смерти организма.

Опыты на животных (лабораторных грызунах, кроликах, собаках, кошках, лошадях) с дистрофией сетчатки и катарактой, которым закапывали в глаза 20 нМ раствор SkQ, показали, что после нескольких недель лечения болезни глаз излечивались, причем прозревали даже некоторые слепые животные. Получены положительные предварительные данные об использовании SkQ для лечения 12 различных старческих заболеваний, в частности, остеопороза, инфарктов и болезней глаз — глаукомы и катаракты . Предполагаемый механизм развития апоптоза показан на рис. 3.

Рис. 3. Предполагаемый механизм развития апоптоза

Проблема рака противоположна проблеме апоптоза. В отличие от старения, когда нужно замедлить процесс апоптоза, при раке нужно сделать прямо противоположное - ускорить этот процесс в раковых клетках. Наиболее эффективны для этого могут быть меры, увеличивающие содержание «свободной» фракции Са в цитозоле клеток и в митохондриях выше фракционного порога, после которого начинается цепная реакция апоптоза в виде гибели раковых клеток. Исходя из особенностей механизмов цепной реакции, подобный эффект должен проявляться уже при наноконцентрациях действующих веществ.

Что касается теории об апоптозе, как генетически запрограммированной смерти, не менее вероятной представляется гипотеза о цепной реакции нарушения металл-лигандного гомеостаза. Цепные реакции отражают более фундаментальные природные процессы, чем сопутствующие им генетически закреплённые биологические проявления. Поэтому гипотезу о природе апоптоза, как проявлении цепной реакции микроэлементоза кальция, переходящего в полимикроэлементоз, нельзя отбросить без объяснения роли металлов в этом процессе с точки зрения общераспространённой теории.

Известно, что запись кода не всегда соответствует «центральной догме» биологии (ДНК > РНК > белок). Открытие отмеченных Нобелевскими премиями обратных ревертаз, в том числе теломераз (2009 г.), а также прионов (Prusiner, 1997), подтверждает правомерность такой точки зрения. Активация «спящих генов» вызывается тем или иным состоянием металл-лигандного гомеостаза. Например, соотношение металлов, связанных с нарушением обмена Си , «будит» или ген синтеза белков болезни Вильсона, которая в настоящее время излечима, или ген синтеза белков болезни Менкеса, которая пока неизлечима. При этом «разбуженный» ген полностью подавляет другой (Bertini, 2008).

Медицинская бионеорганика. Г.К. Барашков

Читайте также: