На уроке рассмотрено решение 23 задания ЕГЭ по информатике: дается подробное объяснение и разбор задания 2017 года
23-е задание — «Преобразование логических выражений» — характеризуется, как задание высокого уровня сложности, время выполнения – примерно 10 минут, максимальный балл — 1
Элементы алгебры логики: преобразования логических выражений
Для выполнения 23 задания ЕГЭ необходимо повторить следующие темы и понятия:
- Рассмотрите тему .
- Рассмотрите тему .
Разные типы заданий 23 и их решение от простого к сложному:
1. Одно уравнение с непересекающимися операндами внешней операции и одним вариантом решения:
2. Одно уравнение с непересекающимися операндами внешней операции и несколькими вариантами решения
3. Одно уравнение с пересекающимися операндами внешней операции
4. Несколько уравнений: метод отображения решений уравнения
Метод отображения можно использовать:
5. Несколько уравнений: использование битовых масок
Побитовая маска (битовая маска) - метод, который можно использовать:
Решение 23 заданий ЕГЭ по информатике
Разбор 23 задания ЕГЭ по информатике 2017 года ФИПИ вариант 1 (Крылов С.С., Чуркина Т.Е.):
Сколько существует различных наборов значений логических переменных x1
, x2
, … x6
, y1
, y2
, … y6
(¬(x1 ∨ y1)) ≡ (x2 ∨ y2)
(¬(x2 ∨ y2)) ≡ (x3 ∨ y3)
…
(¬(x5 ∨ y5)) ≡ (x6 ∨ y6)
* Аналогичное задание находится в сборнике «Типовые экзаменационные варианты», Крылов С.С., Чуркина Т.Е. 2019 года, вариант 7.
¬a ≡ b ¬b ≡ c ¬c ≡ d ¬d ≡ e ¬e ≡ f a ≠ b b ≠ c c ≠ d d ≠ e e ≠ f
x1 | x2 | F |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Результат: 54
Подробное объяснение данного задания смотрите на видео:
23_2: Разбор 23 задания ЕГЭ по информатике 2017 года ФИПИ вариант 3 (Крылов С.С., Чуркина Т.Е.):
Сколько существует различных наборов значений логических переменных x1
, x2
, … x9
, y1
, y2
, … y9
, которые удовлетворяют всем перечисленным ниже условиям?
(¬(x1 ∧ y1)) ≡ (x2 ∧ y2)
(¬(x2 ∧ y2)) ≡ (x3 ∧ y3)
…
(¬(x8 ∧ y8)) ≡ (x9 ∧ y9)
* Аналогичное задание находится в сборнике «Типовые экзаменационные варианты», Крылов С.С., Чуркина Т.Е. 2019 года, вариант 9.
✍ Решение (использование метода побитовая маска):
- Поскольку в скобках одинаковые действия, и переменные повторяются, то введем обозначения:
x1 | x2 | F |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Это означает, что для одного условия не может быть такого случая, что a=0 и b=0 или a=1 и b=1 .
Результат: 324
Предлагаем посмотреть видео с решением данного 23 задания:
23_3: Разбор 23 задания ЕГЭ по информатике 2017 года ФИПИ вариант 5 (Крылов С.С., Чуркина Т.Е.):
Сколько существует различных наборов значений логических переменных x1
, x2
, … x8
, y1
, y2
, … y8
, которые удовлетворяют всем перечисленным ниже условиям?
¬(((x1 ∧ y1) ≡ (x3 ∧ y3)) → (x2 ∧ y2))
¬(((x2 ∧ y2) ≡ (x4 ∧ y4)) → ¬(x3 ∧ y3))
¬(((x3 ∧ y3) ≡ (x5 ∧ y5)) → (x4 ∧ y4))
¬(((x4 ∧ y4) ≡ (x6 ∧ y6)) → ¬(x5 ∧ y5))
¬(((x5 ∧ y5) ≡ (x7 ∧ y7)) → (x6 ∧ y6))
¬(((x6 ∧ y6) ≡ (x8 ∧ y8)) → ¬(x7 ∧ y7))
В качестве ответа Вам нужно указать количество таких наборов.
* Аналогичное задание находится в сборнике «Типовые экзаменационные варианты», Крылов С.С., Чуркина Т.Е., 2019 года, вариант 11.
✍ Решение с использованием метода побитовая маска:
- Поскольку в скобках одинаковые действия, и скобки повторяются в разных уравнениях, то введем обозначения. Обозначим латинскими буквами в алфавитном порядке скобки с переменными согласно их номерам:
- Избавимся от импликации: было: ¬((a ≡ c) → b) стало: ¬(¬(a ≡ c) ∨ b)
- По закону Де Моргана избавимся от отрицания над общей внешней скобкой: было: ¬(¬(a ≡ c) ∨ b) стало: (a ≡ c) ∧ ¬b
Это означает, что все операнды, стоящие после знака конъюнкции, должны быть истинны.
Результат: 81
23_4: Разбор 23 задания ЕГЭ по информатике демоверсия 2018 года ФИПИ:
Сколько существует различных наборов значений логических переменных x1
, x2
, … x7
, y1
, y2
, … y7
, которые удовлетворяют всем перечисленным ниже условиям?
(¬x1 ∨ y1) → (¬x2 ∧ y2) = 1
(¬x2 ∨ y2) → (¬x3 ∧ y3) = 1
…
(¬x6 ∨ y6) → (¬x7 ∧ y7) = 1
✍ Решение, используется метод отображения:
- Внешняя операция в отдельно взятом уравнении — это импликация, результат которой должна быть истина. Импликация истинна если:
0 -> 0 0 -> 1 1 -> 1
т.е. ложна только, когда 1 -> 0
Результат: 22
Видеоразбор демоверсии 2018 23 задания смотрите здесь:
23_5: Решение 23 задания ЕГЭ по информатике 2018 (диагностический вариант, С.С. Крылов, Д.М. Ушаков, Тренажер ЕГЭ 2018 года):
Сколько различных решений имеет уравнение:
(a → b) ∨ (c → ¬d) ∨ ¬(e ∨ a ∨ c) = 1
где a, b, c, d, e — логические переменные?
В качестве ответа указать количество таких наборов.
✍ Решение:
- Внешняя логическая операция — ∨ — дизъюнкция. Таблица истинности:
Результат: 30
23_6: Разбор 23 задания демоверсии егэ по информатике 2019:
Сколько существует различных наборов значений логических переменных x1, x2, … x7, y1, y2, … y7 , которые удовлетворяют всем перечисленным ниже условиям?
(y1 → (y2 ∧ x1)) ∧ (x1 → x2) = 1 (y2 → (y3 ∧ x2)) ∧ (x2 → x3) = 1 … (y6 → (y7 ∧ x6)) ∧ (x6 → x7) = 1 y7 → x7 = 1
В ответе не нужно
перечислять все различные наборы значений переменных x1, x2, … x7, y1, y2, … y7, при которых выполнена данная система равенств.
В качестве ответа Вам нужно указать количество таких наборов.
✍ Решение:
- Поскольку все равенства однотипны (кроме последнего), отличаются только сдвигом номеров переменных на единицу, то для решения будем использовать метод отображения: когда, найдя результат для первого равенства, необходимо применить тот же принцип с последующими равенствами, учитывая полученные результаты для каждого из них.
- Рассмотрим первое равенство. В нем внешняя операция — это конъюнкция, результат которой должна быть истина. Конъюнкция истинна если:
Результат: 36
Видео решения 23 задания демоверсии егэ 2019:
23_7: Разбор 23 задания ЕГЭ по информатике «Типовые экзаменационные варианты», Крылов С.С., Чуркина Т.Е., 2019, вариант 16 (ФИПИ):
Сколько существует различных наборов значений логических переменных x1
, x2
, … x6
, y1
, y2
, … y6
, которые удовлетворяют всем перечисленным ниже условиям?
¬(((x1 ∧ y1)) ≡ (x2 ∧ y2)) → (x3 ∧ y3))
¬(((x2 ∧ y2)) ∨ ¬(x3 ∧ y3)) → (x4 ∧ y4))
¬(((x3 ∧ y3)) ≡ (x4 ∧ y4)) → (x5 ∧ y5))
¬(((x4 ∧ y4)) ∨ ¬(x5 ∧ y5)) → (x6 ∧ y6))
В качестве ответа Вам нужно указать количество таких наборов.
✍ Решение:
- Поскольку в малых скобках везде одна и та же операция (∧ ), и переменные в скобках не пересекаются, то можно выполнить замену:
Ответ: 810
Доступен видеоразбор задания 23:
23_8: Разбор 23 задания ЕГЭ по информатике «Типовые экзаменационные варианты», Крылов С.С., Чуркина Т.Е., 2019, вариант 2 (ФИПИ):
Сколько существует различных наборов значений логических переменных x1
, x2
, … x12
, которые удовлетворяют всем перечисленным ниже условиям?
¬(x1 ≡ x2) → (x3 ∧ x4) = 0
¬(x3 ≡ x4) → (x5 ∧ x6) = 0
¬(x5 ≡ x6) → (x7 ∧ x8) = 0
¬(x7 ≡ x8) → (x9 ∧ x10) = 0
¬(x9 ≡ x10) → (x11 ∧ x12) = 0
(x1 ≡ x4) ∨ (x5 ≡ x8) ∨ (x2 ≡ x12) = 1
В качестве ответа Вам нужно указать количество таких наборов.
✍ Решение:
x1 x2 x4 x5 x8 x12 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0
Для эффективной подготовки по информатике для каждого задания дан краткий теоретический материал для выполнения задачи. Подобрано свыше 10 тренировочных заданий с разбором и ответами, разработанные на основе демоверсии прошлых лет.
Изменений в КИМ ЕГЭ 2020 г. по информатике и ИКТ нет.
Направления, по которым будет проведена проверка знаний:
- Программирование;
- Алгоритмизация;
- Средства ИКТ;
- Информационная деятельность;
- Информационные процессы.
Необходимые действия при подготовке :
- Повторение теоретического курса;
- Решение тестов по информатике онлайн ;
- Знание языков программирования;
- Подтянуть математику и математическую логику;
- Использовать более широкий спектр литературы – школьной программы для успеха на ЕГЭ недостаточно.
Структура экзамена
Длительность экзамена – 3 часа 55 минут (255 минут), полтора часа из которых рекомендовано уделить выполнению заданий первой части КИМов.
Задания в билетах разделены на блоки:
- Часть 1 - 23 задания с кратким ответом.
- Часть 2 - 4 задачи с развернутым ответом.
Из предложенных 23 заданий первой части экзаменационной работы 12 относятся к базовому уровню проверки знаний, 10 – повышенной сложности, 1 – высокому уровню сложности. Три задачи второй части высокого уровня сложности, одна – повышенного.
При решении обязательна запись развернутого ответа (произвольная форма).
В некоторых заданиях текст условия подан сразу на пяти языках программирования – для удобства учеников.
Баллы за задания по информатике
1 балл - за 1-23 задания
2 балла - 25.
З балла - 24, 26.
4 балла - 27.
Всего: 35 баллов.
Для поступления в технический вуз среднего уровня, необходимо набрать не менее 62 баллов. Чтобы поступить в столичный университет, количество баллов должно соответствовать 85-95.
Для успешного написания экзаменационной работы необходимо четкое владение теорией и постоянная практика в решении задач.
Твоя формула успеха
Труд + работа над ошибками + внимательно читать вопрос от начала и до конца, чтобы избежать ошибок = максимальный балл на ЕГЭ по информатике.
"Решаем трудные задачи ЕГЭ по информатике"
Цель семинара: рассмотреть методические приёмы решения наиболее сложных задач ЕГЭ по информатике.
Ведущие: учителя информатики общеобразовательных организаций Костромской области
Внимание!!! Участникам семинара будут выданы сертификаты
Условия получения сертификата
- Выполнение предложенных в ходе мастер-классов заданий (по всем типам заданий)
- Обратная связь с учителями, ведущими мастер-класс (отправка выполненных заданий учителю на электронный адрес)
Ход семинара
1. Задание № 23 ЕГЭ. Решение логических уравнений зеркальным способом
Ведущая: Лебедева Елена Валерьевна, учитель информатики МБОУ города Костромы "Средняя общеобразовательная школа № 21"
- Посмотрите видео-материалы мастер-класса учителя и выполните тренировочные задания. Если видео-материалы просмотреть не удаётся, то скачайте презентацию и познакомьтесь с технологией выполнения задания № 23.
- [email protected]
Тренировочные задания к части 1 Метод отображения задание 1.docx
Тренировочные задания к части 2Метод отображения задание 2.docx
Презентация по материалам части 1 и части 2
Тренировочные задания к части 3. метод отображения задание 3.docx
Презентация по материалам части 3
2. Задание № 5 ЕГЭ. Кодирование и декодирование данных
Ведущая: Смирнова Елена Леонидовна, учитель информатики МОУ СОШ № 2 городского округа город Буй Костромской области
- Посмотрите видео-материалы мастер-класса учителя и выполните тренировочные задания. Если видео-материалы просмотреть не удаётся, то скачайте презентацию и познакомьтесь с технологией выполнения задания № 5.
- Выполненные тренировочные задания отправьте учителю на электронный адрес [email protected]
- Получите от учителя ответ о результатах выполненной вами работы.
Презентация по демонстрируемым материалам
Носкин Андрей Николаевич,
учитель информатики
высшей квалификационной категории,
кандидат военных наук, доцент
ГБОУ Лицей №1575 город Москва
Оптимизированный метод отображения для решения задачи 23 из КИМ ЕГЭ по информатике и ИКТ
Одной из самой трудной задачей в КИМ ЕГЭ является задача 23, в которой надо найти количество различных наборов значений логических переменных, которые удовлетворяют указанному условию.
Данная задача является едва ли не самым сложным заданием КИМ ЕГЭ по информатике и ИКТ. С ним, как правило, справляются не более 5% экзаменуемых {1}.
Такой маленький процент учеников, которые справились с данным заданием объясняется следующим:
- ученики могут путать (забыть) знаки логических операций;
- математические ошибки в процессе выполнения расчетов;
- ошибки в рассуждениях при поиске решения;
- ошибки в процессе упрощения логических выражений;
- учителя рекомендуют решать данную задачу, после выполнения всей работы, так как вероятность допущения
ошибок очень велика, а «вес» задачи составляет всего лишь один первичный балл.
Кроме того, некоторые учителя сами с трудом решают данный тип задач и поэтому стараются решать с детьми более простые задачи.
Также усложняет ситуацию, что в данном блоке существует большое количество разнообразных задач и невозможно подобрать какое-то шаблонное решение.
Для исправление данной ситуации педагогическим сообществом дорабатываются основные две методики решения задач данного типа: решение с помощью битовых цепочек {2} и метод отображений {3}.
Необходимость доработки (оптимизации) данных методик обусловлена тем, что задачи постоянно видоизменяются как по структуре, так и по количеству переменных (только один тип переменных Х, два типа переменных Х и Y, три типа: X, Y, Z).
Сложность освоения данными методиками решения задач подтверждается тем, что на сайте К.Ю. Полякова существует разборов данного типа задач в количестве 38 штук{4}. В некоторых разборах приведены более одного типа решения задачи.
Последнее время в КИМ ЕГЭ по информатике встречаются задачи с двумя типа переменных X и Y.
Я оптимизировал метод отображения и предлагаю своим ученикам пользоваться усовершенствованным методом.
Это дает результат. Процент моих учеников, которые справляются с данной задачей варьируется до 43% от сдающих. Как правило, ежегодно у меня сдает ЕГЭ по информатике от 25 до 33 человек из всех 11-х классов.
До появления задач с двумя типами переменными метод отображения ученики использовали очень успешно, но после появления в логическом выражении Y, я стал замечать, что у детей перестали совпадать ответы с тестами. Оказалось, они не совсем четко стали представлять, как составить таблицу отображений с новым типом переменной. Тогда мне пришла мысль, что для удобства надо все выражение привести к одному типу переменной, как удобно детям.
Приведу более подробно данную методику. Для удобства буду ее рассматривать на примере системы логических выражений, приведенных в {4}.
Сколько различных решений имеет система логических уравнений
(x 1
^ y 1)
= (¬x 2
V
¬
y
2
)
(x 2
^ y 2)
= (¬
x
3
V
¬
y
3
)
...
(x 5
^ y 5
)
= (¬
x
6
V
¬
y
6
)
Решение:
1. Из анализа системы логических уравнений мы видим, что присутствует 6 переменных Х и 6 переменных У . Так как любая из этих переменных может принимать только два значения (0 и 1), то заменим эти переменные на 12 однотипных переменных, например Z.
2. Теперь перепишем систему с новыми однотипными переменными. Сложность задачи будет заключаться во внимательной записи при замене переменных.
(z 1
^ z 2)
=
(¬z 3
V
¬
z
4
)
(z 3
^ z 4)
=
(¬
z
5
V
¬
z
6
)
...
(z 9
^ z 10
)
=
(¬
z
11
V
¬
z
12)
3. Построим таблицу, в которой переберем все варианты z 1 , z 2 , z 3 , z 4 , поскольку в первом логическом уравнении четыре переменных, то таблица будет иметь 16 строк (16=2 4); уберем из таблицы такие значения z 4 , при которых первое уравнение не имеет решения (зачеркнутые цифры).
0 | 0 | 0 | 0 |
1 | |||
1 | 0 | ||
1 | |||
1 | 0 | 0 | |
1 | |||
1 | 0 | ||
1 | |||
1 | 0 | 0 | 0 |
1 | |||
1 | 0 | ||
1 | |||
1 | 0 | 0 | |
1 | |||
1 | 0 | ||
1 |
4. Анализируя таблицу, строим правило отображения пар переменных (например, паре Z 1 Z 2 =00 соответствует пара Z 3 Z 4 = 11) .
5. Заполняем таблицу, вычисляя количество пар переменных, при котором система имеет решение.
6. Складываем все результаты: 9 + 9 + 9 + 27 = 54
7. Ответ: 54.
Приведенная выше оптимизированная методика решения задачи 23 из КИМ ЕГЭ позволила ученикам вновь обрести уверенность и решать успешно этот тип задачи.
Литература:
1. ФИПИ. Методические рекомендации для учителей, подготовленные на основе анализа типичных ошибок участников ЕГЭ 2015 года по ИНФОРМАТИКЕ и ИКТ. Режим доступа: http://www.fipi.ru/sites/default/files/document/1442163533/informatika_i_ikt.pdf
2. К.Ю. Поляков, М.А. Ройтберг. Системы логических уравнений: решение с помощью битовых цепочек. Журнал Информатика, № 12, 2014, с. 4-12. Издательский дом "Первое сентября", г.Москва.3. Е.А. Мирончик, Метод отображения. Журнал Информатика, № 10, 2013, с. 18-26. Издательский дом "Первое сентября", г.Москва.
Решение систем логических уравнений методом замены переменных
Метод замены переменных применяется, если некоторые переменные входят в состав уравнений только в виде конкретного выражения, и никак иначе. Тогда это выражение можно обозначить новой переменной.
Пример 1.
Сколько существует различных наборов значений логических переменных x1, х2, х3, х4, х5, х6, х7, х8, которые удовлетворяют всем перечисленным ниже условиям?
(x1 → х2) → (х3→ х4) = 1
(х3 → х4) → (х5 → х6) = 1
(х5 → х6) → (х7 → х8) = 1
В ответе не нужно перечислять все различные наборы значений переменных x1, х2, х3, х4, х5, х6, х7, х8, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.
Решение:
(x1 → х2) = y1; (х3 → х4) = y2; (х5 → х6) = y3; (х7 → х8) = y4.
Тогда можно записать систему в виде одного уравнения:
(y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) = 1. Конъюнкция равна 1 (истинна), когда каждый операнд принимает значение 1. Т.е. каждая из импликаций должна быть истинна, а это выполняется при всех значениях, кроме (1 → 0). Т.е. в таблице значений переменных y1, y2, y3, y4 единица не должна стоять левее нуля:
Т.е. условия выполняются для 5 наборов y1-y4.
Т.к. y1 = x1 → x2, то значение y1 = 0 достигается на единственном наборе x1, x2: (1, 0), а значение y1 = 1 – на трех наборах x1, x2: (0,0) , (0,1), (1,1). Аналогично для y2, y3, y4.
Поскольку каждый набор (x1,x2) для переменной y1 сочетается с каждым набором (x3,x4) для переменной y2 и т.д., то количества наборов переменных x перемножаются:
Кол-во наборов на x1…x8 |
||||
Сложим количество наборов: 1 + 3 + 9 + 27 + 81 = 121.
Ответ: 121
Пример 2.
Сколько существует различных наборов значений логических переменных x1, x2, ... x9, y1, y2, ... y9, которые удовлетворяют всем перечисленным ниже условиям?
(¬ (x1 ≡ y1)) ≡ (x2 ≡ y2)
(¬ (x2 ≡ y2)) ≡ (x3 ≡ y3)
(¬ (x8 ≡ y8)) ≡ (x9 ≡ y9)
В ответе не нужно перечислять все различные наборы значений переменных x1, x2, ... x9, y1, y2, ... y9, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.
Решение:
Сделаем замену переменных:
(x1 ≡ y1) = z1, (x2 ≡ y2) = z2,…. ,(x9 ≡ y9) = z9
Систему можно записать в виде одного уравнения:
(¬ z1 ≡ z2) ∧ (¬ z2 ≡ z3) ∧ …..∧ (¬ z8 ≡ z9)
Эквивалентность истинна, только если оба операнда равны. Решениями этого уравнения будут два набора:
z1 | z2 | z3 | z4 | z5 | z6 | z7 | z8 | z9 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
Т.к. zi = (xi ≡ yi), то значению zi = 0 соответствуют два набора (xi,yi): (0,1) и (1,0), а значению zi = 1 - два набора (xi,yi): (0,0) и (1,1).
Тогда первому набору z1, z2,…, z9 соответствует 2 9 наборов (x1,y1), (x2,y2),…, (x9,y9).
Столько же соответствует второму набору z1, z2,…, z9. Тогда всего 2 9 +2 9 = 1024 наборов.
Ответ: 1024
Решение систем логических уравнений методом визуального определения рекурсии.
Этот метод применяется, если система уравнений достаточно проста и порядок увеличения количества наборов при добавлении переменных очевиден.
Пример 3.
Сколько различных решений имеет система уравнений
¬x9 ∨ x10 = 1,
где x1, x2, … x10 - логические переменные?
В ответе не нужно перечислять все различные наборы значений x1, x2, … x10, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.
Решение:
Решим первое уравнение. Дизъюнкция равна 1, если хотя бы один из ее операндов равен 1. Т.е. решениями являются наборы:
Для x1=0 существуют два значения x2 (0 и 1), а для x1=1 только одно значение x2 (1), такие, что набор (x1,x2) является решением уравнения. Всего 3 набора.
Добавим переменную x3 и рассмотрим второе уравнение. Оно аналогично первому, значит для x2=0 существуют два значения x3 (0 и 1), а для x2=1 только одно значение x3 (1), такие, что набор (x2,x3) является решением уравнения. Всего 4 набора.
Несложно заметить, что при добавлении очередной переменной добавляется один набор. Т.е. рекурсивная формула количества наборов на (i+1) переменных:
N i +1 = N i + 1. Тогда для десяти переменных получим 11 наборов.
Ответ: 11
Решение систем логических уравнений различного типа
Пример 4.
Сколько существует различных наборов значений логических переменных x 1 , ..., x 4 , y 1 ,..., y 4 , z 1 ,..., z 4 , которые удовлетворяют всем перечисленным ниже условиям?
(x 1 → x 2) ∧ (x 2 → x 3) ∧ (x 3 → x 4) = 1
(y 1 → y 2) ∧ (y 2 → y 3) ∧ (y 3 → y 4) = 1
(z 1 → z 2) ∧ (z 2 → z 3) ∧ (z 3 → z 4) = 1
x 4 ∧ y 4 ∧ z 4 = 0
В ответе не нужно перечислять все различные наборы значений переменных x 1 , ..., x 4 , y 1 , ..., y 4 , z 1 , ..., z 4 , при которых выполнена данная система равенств.
В качестве ответа Вам нужно указать количество таких наборов.
Решение:
Заметим, что три уравнения системы одинаковы на различных независимых наборах переменных.
Рассмотрим первое уравнение. Конъюнкция истинна (равна 1) только тогда, когда все ее операнды истинны (равны 1). Импликация равна 1 на всех наборах, кроме (1,0). Значит, решением первого уравнения будут такие наборы x1, x2, x3, x4, в которых 1 не стоит левее 0 (5 наборов):
Аналогично, решениями второго и третьего уравнений будут абсолютно такие же наборы y1,…,y4 и z1,…, z4.
Теперь проанализируем четвертое уравнение системы: x 4 ∧ y 4 ∧ z 4 = 0. Решением будут все наборы x4, y4, z4, в которых хотя бы одна из переменных равна 0.
Т.е. для x4 = 0 подойдут все возможные наборы (y4, z4), а для x4 = 1 подойдут наборы (y4, z4), в которых присутствует хотя бы один ноль: (0, 0), (0,1) , (1,0).
Кол-во наборов |
||||
Общее количество наборов 25 + 4*9 = 25 + 36 = 61.
Ответ: 61
Решение систем логических уравнений методом построения рекуррентных формул
Метод построения рекуррентных формул применяется при решении сложных систем, в которых порядок увеличения количества наборов неочевиден, а построение дерева невозможно из-за объемов.
Пример 5.
Сколько существует различных наборов значений логических переменных x1, x2, … x7, y1, y2, … y7, которые удовлетворяют всем перечисленным ниже условиям?
(x1 ∨ y1) ∧ ((x2 ∧ y2) → (x1 ∧ y1)) = 1
(x2 ∨ y2) ∧ ((x3 ∧ y3) → (x2 ∧ y2)) = 1
(x6 ∨ y6) ∧ ((x7 ∧ y7) → (x6 ∧ y6)) = 1
В ответе не нужно перечислять все различные наборы значений переменных x1, x2, ..., x7, y1, y2, ..., y7, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.
Решение:
Заметим, что первые шесть уравнений системы одинаковы и отличаются только набором переменных. Рассмотрим первое уравнение. Его решением будут следующие наборы переменных:
Обозначим:
число наборов (0,0) на переменных (x1,y1) через A 1 ,
число наборов (0,1) на переменных (x1,y1) через B 1 ,
число наборов (1,0) на переменных (x1,y1) через C 1 ,
число наборов (1,1) на переменных (x1,y1) через D 1 .
число наборов (0,0) на переменных (x2,y2) через A 2 ,
число наборов (0,1) на переменных (x2,y2) через B 2 ,
число наборов (1,0) на переменных (x2,y2) через C 2 ,
число наборов (1,1) на переменных (x2,y2) через D 2 .
Из дерева решений видим, что
A 1 =0, B 1 =1, C 1 =1, D 1 =1.
Заметим, что набор (0,0) на переменных (x2,y2) получается из наборов (0,1), (1,0) и (1,1) на переменных (x1,y1). Т.е. A 2 =B 1 +C 1 +D 1 .
Набор (0,1) на переменных (x2,y2) получается из наборов (0,1), (1,0) и (1,1) на переменных (x1,y1). Т.е. B 2 =B 1 +C 1 +D 1 .
Аналогично рассуждая, заметим, что С 2 =B 1 +C 1 +D 1 . D 2 = D 1 .
Таким образом, получаем рекуррентные формулы:
A i+1 = B i + C i + D i
B i+1 = B i + C i + D i
C i+1 = B i + C i + D i
D i+1 = A i +B i + C i + D i
Составим таблицу
Наборы | Обозн . | Формула |
Количество наборов |
||||||
i=1 | i=2 | i=3 | i=4 | i=5 | i=6 | i=7 | |||
(0,0) | A i | A i+1 =B i +C i +D i | 0 | 3 | 7 | 15 | 31 | 63 | 127 |
(0,1) | B i | B i+1 =B i +C i +D i | 1 | 3 | 7 | 15 | 31 | 63 | 127 |
(1,0) | C i | C i+1 =B i +C i +D i | 1 | 3 | 7 | 15 | 31 | 63 | 127 |
(1,1) | D i | D i+1 =D i | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Последнему уравнению (x7 ∨ y7) = 1 удовлетворяют все наборы, кроме тех, в которых x7=0 и y7=0. В нашей таблице число таких наборов A 7 .
Тогда общее количество наборов равно B 7 + C 7 + D 7 = 127+127+1 = 255
Ответ: 255