Как делать 23 задание егэ по информатике. Более сложный пример

На уроке рассмотрено решение 23 задания ЕГЭ по информатике: дается подробное объяснение и разбор задания 2017 года


23-е задание — «Преобразование логических выражений» — характеризуется, как задание высокого уровня сложности, время выполнения – примерно 10 минут, максимальный балл — 1

Элементы алгебры логики: преобразования логических выражений

Для выполнения 23 задания ЕГЭ необходимо повторить следующие темы и понятия:

  • Рассмотрите тему .
  • Рассмотрите тему .

Разные типы заданий 23 и их решение от простого к сложному:

1. Одно уравнение с непересекающимися операндами внешней операции и одним вариантом решения:

2. Одно уравнение с непересекающимися операндами внешней операции и несколькими вариантами решения


3. Одно уравнение с пересекающимися операндами внешней операции


  • Рассмотрим каждый случай отдельно и учтем его результаты для второго уравнения системы:
  • Поскольку для двух уравнений решения в трех случаях не могут «работать» одновременно, то результат — это сложение трех решений:
  • 4. Несколько уравнений: метод отображения решений уравнения

    Метод отображения можно использовать:


    5. Несколько уравнений: использование битовых масок

    Побитовая маска (битовая маска) - метод, который можно использовать:


    Решение 23 заданий ЕГЭ по информатике

    Разбор 23 задания ЕГЭ по информатике 2017 года ФИПИ вариант 1 (Крылов С.С., Чуркина Т.Е.):

    Сколько существует различных наборов значений логических переменных x1 , x2 , … x6 , y1 , y2 , … y6

    (¬(x1 ∨ y1)) ≡ (x2 ∨ y2)
    (¬(x2 ∨ y2)) ≡ (x3 ∨ y3)

    (¬(x5 ∨ y5)) ≡ (x6 ∨ y6)

    * Аналогичное задание находится в сборнике «Типовые экзаменационные варианты», Крылов С.С., Чуркина Т.Е. 2019 года, вариант 7.


    ¬a ≡ b ¬b ≡ c ¬c ≡ d ¬d ≡ e ¬e ≡ f a ≠ b b ≠ c c ≠ d d ≠ e e ≠ f
  • Вспомним, как выглядит таблица истинности для эквивалентности:
  • x1 x2 F
    0 0 1
    0 1 0
    1 0 0
    1 1 1
  • Рассмотрим, в каких случаях выражения будут возвращать ложь. Каждое из пяти выражений будет ложно, когда: либо оба операнда истинны, либо оба операнда ложны (операция равносильность = истине: при 00 или 11).
  • Составим битовую маску для наших уравнений. В цепочке значений от a до f не может быть двух единиц или двух нулей, идущих подряд, так как в этом случае система будет ложна (к примеру, a ≠ b , если 0 ≠ 0 — это ложь). Таким образом, для данных уравнений существует всего две цепочки решений:
  • цеп.1 цеп.2 a 0 1 b 1 0 c 0 1 d 1 0 e 0 1 f 1 0
  • Теперь вспомним о заменах: каждая из переменных от a до f представляет собой скобку, внутри которой две переменные, связанные дизъюнкцией . Дизъюнкция двух переменных истинна в трех случаях (01, 10, 11), а ложна — в одном (00). Т.е., к примеру:
  • x1 ∨ y1 = 1 тогда, когда: либо 0 ∨ 1 , либо 1 ∨ 0 , либо 1 ∨ 1 x1 ∨ y1 = 0 тогда и только тогда, когда 0 ∨ 0
  • Это говорит о том, что на каждую единицу в цепочке приходится три варианта значений, а на каждый ноль - один . Т.о. получаем:
  • для первой цепочки: 3 3 * 1 3 = 27 наборов значений ,
  • и для второй: 3 3 * 1 3 = 27 наборов значений
  • Итого наборов:
  • 27 * 2 = 54

    Результат: 54

    Подробное объяснение данного задания смотрите на видео:


    23_2: Разбор 23 задания ЕГЭ по информатике 2017 года ФИПИ вариант 3 (Крылов С.С., Чуркина Т.Е.):

    Сколько существует различных наборов значений логических переменных x1 , x2 , … x9 , y1 , y2 , … y9 , которые удовлетворяют всем перечисленным ниже условиям?

    (¬(x1 ∧ y1)) ≡ (x2 ∧ y2)
    (¬(x2 ∧ y2)) ≡ (x3 ∧ y3)

    (¬(x8 ∧ y8)) ≡ (x9 ∧ y9)

    * Аналогичное задание находится в сборнике «Типовые экзаменационные варианты», Крылов С.С., Чуркина Т.Е. 2019 года, вариант 9.


    ✍ Решение (использование метода побитовая маска):
    • Поскольку в скобках одинаковые действия, и переменные повторяются, то введем обозначения:
    ¬a ≡ b ¬b ≡ c ¬c ≡ d ¬d ≡ e ¬e ≡ f ¬f ≡ g ¬g ≡ h ¬h ≡ i
  • Вместо отрицания первого операнда просто будем использовать «не эквивалентно»:
  • a ≠ b b ≠ c c ≠ d d ≠ e e ≠ f f ≠ g g ≠ h h ≠ i
  • Вспомним таблицу истинности для эквивалентности:
  • x1 x2 F
    0 0 1
    0 1 0
    1 0 0
    1 1 1
  • Теперь рассмотрим, в каких случаях полученные условия будут возвращать ложь. Каждое из условий будет ложно, если либо оба операнда истинны, либо оба операнда ложны: например a ≠ b = 0 , если: a=0 и b=0 или a=1 и b=1

    Это означает, что для одного условия не может быть такого случая, что a=0 и b=0 или a=1 и b=1 .

  • Составим битовую маску для условий. В цепочке значений от a до i не может быть двух единиц или двух нулей, идущих подряд, так как в этом случае система будет ложна. Таким образом, для данных условий существует всего две цепочки решений:
  • цеп.1 цеп.2 цеп. цеп. a 0 1 0 1 b 1 0 0 1 не может быть! c 0 1 ... ... d 1 0 e 0 1 f 1 0 g 0 1 h 1 0 i 0 1
  • a до i истинна в одном случае, а ложна — в трех . Т.е., к примеру:
  • x1 ∧ y1 = 0 тогда, когда: либо 0 ∧ 1 , либо 1 ∧ 0 , либо 0 ∧ 0 x1 ∧ y1 = 1 тогда и только тогда, когда 1 ∧ 1
  • 0 в цепочке приходится три 1 - один . Т.о. получаем:
  • для первой цепочки: 3 5 * 1 4 = 243 набора значений ,
  • и для второй: 3 4 * 1 5 = 81 набор значений
  • Итого наборов:
  • 243 + 81 = 324

    Результат: 324

    Предлагаем посмотреть видео с решением данного 23 задания:


    23_3: Разбор 23 задания ЕГЭ по информатике 2017 года ФИПИ вариант 5 (Крылов С.С., Чуркина Т.Е.):

    Сколько существует различных наборов значений логических переменных x1 , x2 , … x8 , y1 , y2 , … y8 , которые удовлетворяют всем перечисленным ниже условиям?

    ¬(((x1 ∧ y1) ≡ (x3 ∧ y3)) → (x2 ∧ y2))
    ¬(((x2 ∧ y2) ≡ (x4 ∧ y4)) → ¬(x3 ∧ y3))
    ¬(((x3 ∧ y3) ≡ (x5 ∧ y5)) → (x4 ∧ y4))
    ¬(((x4 ∧ y4) ≡ (x6 ∧ y6)) → ¬(x5 ∧ y5))
    ¬(((x5 ∧ y5) ≡ (x7 ∧ y7)) → (x6 ∧ y6))
    ¬(((x6 ∧ y6) ≡ (x8 ∧ y8)) → ¬(x7 ∧ y7))

    В качестве ответа Вам нужно указать количество таких наборов.

    * Аналогичное задание находится в сборнике «Типовые экзаменационные варианты», Крылов С.С., Чуркина Т.Е., 2019 года, вариант 11.


    ✍ Решение с использованием метода побитовая маска:
    • Поскольку в скобках одинаковые действия, и скобки повторяются в разных уравнениях, то введем обозначения. Обозначим латинскими буквами в алфавитном порядке скобки с переменными согласно их номерам:
    1-a 2-b 3-c 4-d 5-e 6-f 7-g 8-h
  • После замены получим следующие выражения:
  • ¬((a ≡ c) → b) ¬((b ≡ d) → ¬c) ¬((c ≡ e) → d) ¬((d ≡ f) → ¬e) ¬((e ≡ g) → f) ¬((f ≡ h) → ¬g)
  • Используя законы алгебры логики, преобразуем одно из условий (первое). Потом по аналогии выполним преобразования для остальных условий:
    1. Избавимся от импликации:
    2. было: ¬((a ≡ c) → b) стало: ¬(¬(a ≡ c) ∨ b)
    3. По закону Де Моргана избавимся от отрицания над общей внешней скобкой:
    4. было: ¬(¬(a ≡ c) ∨ b) стало: (a ≡ c) ∧ ¬b
  • По аналогии преобразуем остальные условия, учитывая, что двойное отрицание просто аннулирует отрицание:
  • (a ≡ c) ∧ ¬b (b ≡ d) ∧ c (c ≡ e) ∧ ¬d (d ≡ f) ∧ e (e ≡ g) ∧ ¬f (f ≡ h) ∧ g
  • Рассмотрим, в каких случаях условия будут возвращать истину. Внешняя операция конъюнкция: каждое из условий будет истинно только в том случае, если оба операнда истинны : например: (a ≡ c) ∧ ¬b возвратит истину , если: (a ≡ c) = 1 и ¬b = 1

    Это означает, что все операнды, стоящие после знака конъюнкции, должны быть истинны.

  • Составим битовую маску для наших уравнений с учетом указанного требования:
  • цеп.1 a ? b 0 c 1 d 0 e 1 f 0 g 1 h ?
  • Значение для переменной a найдем из условия (a ≡ c) ∧ b . В битовой маске с=1 , значит, чтобы условие a ≡ c было истинным, а должно тоже равняться 1
  • Значение для переменной h найдем из условия (f ≡ h) ∧ ¬g . В битовой маске f=0 , значит, чтобы условие f ≡ h было истинным, h должно тоже равняться 0 (таблица истинности эквивалентности).
  • Получим итоговую битовую маску:
  • цеп.1 a 1 b 0 c 1 d 0 e 1 f 0 g 1 h 0
  • Теперь вспомним, что каждая из переменных от a до h представляет собой скобку, внутри которой две переменные, связанные конъюнкцией. Конъюнкция двух переменных истинна в одном случае, а ложна — в трех . Т.е., к примеру:
  • x1 ∧ y1 = 0 тогда, когда: либо 0 ∧ 1 , либо 1 ∧ 0 , либо 0 ∧ 0 x1 ∧ y1 = 1 тогда и только тогда, когда 1 ∧ 1
  • Это говорит о том, что на каждый 0 в цепочке приходится три варианта значений, а на каждую 1 - один . Т.о., получаем:
  • 3 4 * 1 4 = 81 набор значений

    Результат: 81


    23_4: Разбор 23 задания ЕГЭ по информатике демоверсия 2018 года ФИПИ:

    Сколько существует различных наборов значений логических переменных x1 , x2 , … x7 , y1 , y2 , … y7 , которые удовлетворяют всем перечисленным ниже условиям?

    (¬x1 ∨ y1) → (¬x2 ∧ y2) = 1
    (¬x2 ∨ y2) → (¬x3 ∧ y3) = 1

    (¬x6 ∨ y6) → (¬x7 ∧ y7) = 1



    ✍ Решение, используется метод отображения:
    • Внешняя операция в отдельно взятом уравнении — это импликация, результат которой должна быть истина. Импликация истинна если:

    0 -> 0 0 -> 1 1 -> 1

    т.е. ложна только, когда 1 -> 0

  • Если скобка (¬x1 ∨ y1) = 0 , то для скобки (¬x2 ∧ y2) возможны варианты 0 или 1 .
  • Если скобка (¬x1 ∨ y1) = 1 , то для скобки (¬x2 ∧ y2) возможен один вариант — 1 .
  • В скобках дизъюнкция (∨) истинна, когда: 0 ∨ 1, 1 ∨ 0, 1 ∨ 1; ложна, когда: 0 ∨ 0.
  • В скобках конъюнкция истинна, когда 1 ∧ 1 и ложна во всех остальных случаях.
  • Построим таблицу истинности для первого уравнения, учтем все возможные варианты. Выделим в ней те строки, которые возвращают ложь: т.е. где первая скобка (¬x1 ∨ y1) возвратит 1 , а вторая (¬x2 ∧ y2) 0 :
  • Поскольку уравнения однотипные и отличаются только сдвигом номеров переменных на единицу, то будем использовать метод отображения. Для первого уравнения x1 и y1 будут обозначаться x i и y i , а x2 и y2 будут обозначаться x i+1 и y i+1 .
  • Теперь найдем общее количество решений, подставляя в отображении соответствующие x и y
  • В итоге получаем:
  • 1 + 19 + 1 + 1 = 22

    Результат: 22

    Видеоразбор демоверсии 2018 23 задания смотрите здесь:


    23_5: Решение 23 задания ЕГЭ по информатике 2018 (диагностический вариант, С.С. Крылов, Д.М. Ушаков, Тренажер ЕГЭ 2018 года):

    Сколько различных решений имеет уравнение:

    (a → b) ∨ (c → ¬d) ∨ ¬(e ∨ a ∨ c) = 1

    где a, b, c, d, e — логические переменные?

    В качестве ответа указать количество таких наборов.


    ✍ Решение:
    • Внешняя логическая операция — — дизъюнкция. Таблица истинности:
    0 ∨ 0 = 0 0 ∨ 1 = 1 1 ∨ 0 = 1 1 ∨ 1 = 1
  • Поскольку дизъюнкция равна единице аж в трех случаях, то искать количество вариантов будет достаточно сложно. Значительно проще найти варианты, когда ∨ = 0 и вычесть их из общего количества вариантов .
  • Найдем общее количество строк в таблице истинности. Всего 5 переменных, поэтому:
  • количество строк в ТаблИстин = 2 5 = 32
  • Посчитаем, сколько вариантов имеют решение при значении уравнения = 0. Чтобы потом вычесть это значение из общего количества. Для операции дизъюнкция (∨) каждая скобка должна быть равна нулю:
  • (a → b) ∨ (c → ¬d) ∨ ¬(e ∨ a ∨ c) = 0 0 0 0
  • Теперь рассмотрим каждую скобку отдельно:
  • 1. (a → b) = 0, импликация ложна в одном случае (1 → 0) = 0 т.е. имеем a = 1 , b = 0 2. (c → ¬d) = 0, импликация ложна в одном случае (1 → 0) = 0 т.е. имеем c = 1 , d = 1 3. ¬(e ∨ a ∨ c) = 0
  • т.к. перед скобкой стоит отрицание, то для большей понятности раскроем скобки по закону Де Моргана:
  • ¬e ∧ ¬a ∧ ¬c = 0 Конъюнкция равна 0, когда хоть один операнд = 0.
  • из п.1 и п.2 имеем a = 1 и c = 1 . Тогда для e имеем два варианта: e = 0 , e = 1 , т.е.:
  • ¬0 ∧ ¬1 ∧ ¬1 = 0 ¬1 ∧ ¬1 ∧ ¬1 = 0
  • То есть всего имеем 2 цепочки «исключаемых» решений:
  • 1. a = 1, b = 0, c = 1, d = 1, e = 0 2. a = 1, b = 0, c = 1, d = 1, e = 1
  • Эти два варианта исключаем (вычитаем) из общего количества:
  • 32 - 2 = 30

    Результат: 30


    23_6: Разбор 23 задания демоверсии егэ по информатике 2019:

    Сколько существует различных наборов значений логических переменных x1, x2, … x7, y1, y2, … y7 , которые удовлетворяют всем перечисленным ниже условиям?

    (y1 → (y2 ∧ x1)) ∧ (x1 → x2) = 1 (y2 → (y3 ∧ x2)) ∧ (x2 → x3) = 1 … (y6 → (y7 ∧ x6)) ∧ (x6 → x7) = 1 y7 → x7 = 1

    В ответе не нужно перечислять все различные наборы значений переменных x1, x2, … x7, y1, y2, … y7, при которых выполнена данная система равенств.
    В качестве ответа Вам нужно указать количество таких наборов.


    ✍ Решение:
    • Поскольку все равенства однотипны (кроме последнего), отличаются только сдвигом номеров переменных на единицу, то для решения будем использовать метод отображения: когда, найдя результат для первого равенства, необходимо применить тот же принцип с последующими равенствами, учитывая полученные результаты для каждого из них.
    • Рассмотрим первое равенство. В нем внешняя операция — это конъюнкция, результат которой должна быть истина. Конъюнкция истинна если:
    1 -> 1 т.е.: (y1 → (y2 ∧ x1)) ∧ (x1 → x2) = 1 1 1
  • Найдем случаи, когда равенство будет ложным (чтобы в дальнейшем исключить эти случаи):
  • (y1 → (y2 ∧ x1)) ∧ (x1 → x2) = 0
  • Внутри первой «большой» скобки находится операция импликации. Которая ложна:
  • 1 -> 0 = 0 т.е. случаи: y1=1 → (y2=0 ∧ x1=1) y1=1 → (y2=1 ∧ x1=0) y1=1 → (y2=0 ∧ x1=0)
  • Таким же образом проанализируем вторую скобку. В ней импликация вернет ложь:
  • (x1=1 → x2=0)
  • Построим таблицу истинности для первого уравнения, учтем все возможные варианты. Поскольку переменных 4, то строк будет 2 4 = 16 . Выделим те строки, которые возвращают ложь:
  • Теперь переходим к методу отображения. Для первого уравнения x1 и y1 обозначим x i и y i , а x2 и y2 обозначим x i+1 и y i+1 . Стрелками обозначим значения только тех строк таблицы истинности, которые возвращают 1 .
  • Найдем общее количество решений, подставляя в таблицу из отображения соответствующие значения x и y , и, учитывая предыдущие значения:
  • Теперь вернемся к последнему равенству. По условию оно должно быть истинным. Равенство вернет ложь только в одном случае:
  • y7=1 → x7=0 = 0
  • Найдем соответствующие переменные в нашей таблице:
  • Рассчитаем сумму по последнему столбцу, не учитывая строку, возвращающую ложь:
  • 1 + 7 + 28 = 36

    Результат: 36

    Видео решения 23 задания демоверсии егэ 2019:


    23_7: Разбор 23 задания ЕГЭ по информатике «Типовые экзаменационные варианты», Крылов С.С., Чуркина Т.Е., 2019, вариант 16 (ФИПИ):

    Сколько существует различных наборов значений логических переменных x1 , x2 , … x6 , y1 , y2 , … y6 , которые удовлетворяют всем перечисленным ниже условиям?

    ¬(((x1 ∧ y1)) ≡ (x2 ∧ y2)) → (x3 ∧ y3))
    ¬(((x2 ∧ y2)) ∨ ¬(x3 ∧ y3)) → (x4 ∧ y4))
    ¬(((x3 ∧ y3)) ≡ (x4 ∧ y4)) → (x5 ∧ y5))
    ¬(((x4 ∧ y4)) ∨ ¬(x5 ∧ y5)) → (x6 ∧ y6))

    В качестве ответа Вам нужно указать количество таких наборов.


    ✍ Решение:
    • Поскольку в малых скобках везде одна и та же операция (), и переменные в скобках не пересекаются, то можно выполнить замену:
    ¬((a ≡ b) → c) = 1 ¬((b ∨ ¬c) → d) = 1 ...
  • Избавимся от отрицания, указав, что каждое выражение при этом становится ложным:
  • (a ≡ b) → c = 0 (b ∨ ¬c) → d = 0 (c ≡ d) → e = 0 (d ∨ ¬e) → f = 0
  • Внешняя операция во всех выражениях — импликация (). Вспомним таблицу истинности для операции импликация:
  • 0 → 0 = 1 0 → 1 = 1 1 → 0 = 0 1 → 1 = 1
  • Импликация ложна только в одном случае: 1 → 0 = 0 . Все выражения в задании ложны. Учтем это.
  • Построим побитовую маску, прослеживая значение каждой переменной, двигаясь с первого выражения к последнему:
  • цеп1 цеп2 a 0 1 b 0 1 c 0 0 d 0 0 e 0 0 f 0 0
  • Так как каждая переменная изначально заменяет скобку, в которой находится операция конъюнкция (∧), то, вспомнив таблицу истинности для этой операции, сопоставим для каждого нуля 3 решения (конъюнкция ложна в трех случаях), а для каждой единицы — 1 решение (конъюнкция истинна в одном случае).
  • Посчитаем значение для каждой побитовой цепочки:
  • цеп1 = 3*3*3*3*3*3 = 729 решений цеп2 = 1*1*3*3*3*3 = 81 решение
  • Поскольку цепочки не могут выполняться одновременно, а выполнится либо одна, либо другая, то полученные значения необходимо сложить:
  • 729 + 81 = 810 решений

    Ответ: 810

    Доступен видеоразбор задания 23:


    23_8: Разбор 23 задания ЕГЭ по информатике «Типовые экзаменационные варианты», Крылов С.С., Чуркина Т.Е., 2019, вариант 2 (ФИПИ):

    Сколько существует различных наборов значений логических переменных x1 , x2 , … x12 , которые удовлетворяют всем перечисленным ниже условиям?

    ¬(x1 ≡ x2) → (x3 ∧ x4) = 0
    ¬(x3 ≡ x4) → (x5 ∧ x6) = 0
    ¬(x5 ≡ x6) → (x7 ∧ x8) = 0
    ¬(x7 ≡ x8) → (x9 ∧ x10) = 0
    ¬(x9 ≡ x10) → (x11 ∧ x12) = 0
    (x1 ≡ x4) ∨ (x5 ≡ x8) ∨ (x2 ≡ x12) = 1

    В качестве ответа Вам нужно указать количество таких наборов.


    ✍ Решение:

    x1 x2 x4 x5 x8 x12 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0

  • Так как в схеме отображений значения для пары x1 и x2 равные 00 и 11 не используются, то выделим их и не будем использовать в последующих вычислениях. Выпишем оставшиеся варианты:
  • x1 x2 x4 x5 x8 x12 0 1 1 0 1 0 y1 0 1 1 1 0 0 y2 1 0 0 0 1 1 y3 1 0 0 1 0 1 y4
  • Построим таблицу отображений отдельно для каждой получившейся строки, учитывая значения операндов (x n):






  • Посчитаем число решений для всех полученных строк: 4 + 4 + 2 + 2 = 12
  • Эти решения необходимо исключить, т.к. мы рассмотрели ложный случай уравнения 6 :
  • 96 - 12 = 84

    Для эффективной подготовки по информатике для каждого задания дан краткий теоретический материал для выполнения задачи. Подобрано свыше 10 тренировочных заданий с разбором и ответами, разработанные на основе демоверсии прошлых лет.

    Изменений в КИМ ЕГЭ 2020 г. по информатике и ИКТ нет.

    Направления, по которым будет проведена проверка знаний:

    • Программирование;
    • Алгоритмизация;
    • Средства ИКТ;
    • Информационная деятельность;
    • Информационные процессы.

    Необходимые действия при подготовке :

    • Повторение теоретического курса;
    • Решение тестов по информатике онлайн ;
    • Знание языков программирования;
    • Подтянуть математику и математическую логику;
    • Использовать более широкий спектр литературы – школьной программы для успеха на ЕГЭ недостаточно.

    Структура экзамена

    Длительность экзамена – 3 часа 55 минут (255 минут), полтора часа из которых рекомендовано уделить выполнению заданий первой части КИМов.

    Задания в билетах разделены на блоки:

    • Часть 1 - 23 задания с кратким ответом.
    • Часть 2 - 4 задачи с развернутым ответом.

    Из предложенных 23 заданий первой части экзаменационной работы 12 относятся к базовому уровню проверки знаний, 10 – повышенной сложности, 1 – высокому уровню сложности. Три задачи второй части высокого уровня сложности, одна – повышенного.

    При решении обязательна запись развернутого ответа (произвольная форма).
    В некоторых заданиях текст условия подан сразу на пяти языках программирования – для удобства учеников.

    Баллы за задания по информатике

    1 балл - за 1-23 задания
    2 балла - 25.
    З балла - 24, 26.
    4 балла - 27.
    Всего: 35 баллов.

    Для поступления в технический вуз среднего уровня, необходимо набрать не менее 62 баллов. Чтобы поступить в столичный университет, количество баллов должно соответствовать 85-95.

    Для успешного написания экзаменационной работы необходимо четкое владение теорией и постоянная практика в решении задач.

    Твоя формула успеха

    Труд + работа над ошибками + внимательно читать вопрос от начала и до конца, чтобы избежать ошибок = максимальный балл на ЕГЭ по информатике.

    "Решаем трудные задачи ЕГЭ по информатике"

    Цель семинара: рассмотреть методические приёмы решения наиболее сложных задач ЕГЭ по информатике.

    Ведущие: учителя информатики общеобразовательных организаций Костромской области

    Внимание!!! Участникам семинара будут выданы сертификаты

    Условия получения сертификата

    • Выполнение предложенных в ходе мастер-классов заданий (по всем типам заданий)
    • Обратная связь с учителями, ведущими мастер-класс (отправка выполненных заданий учителю на электронный адрес)

    Ход семинара

    1. Задание № 23 ЕГЭ. Решение логических уравнений зеркальным способом

    Ведущая: Лебедева Елена Валерьевна, учитель информатики МБОУ города Костромы "Средняя общеобразовательная школа № 21"

    • Посмотрите видео-материалы мастер-класса учителя и выполните тренировочные задания. Если видео-материалы просмотреть не удаётся, то скачайте презентацию и познакомьтесь с технологией выполнения задания № 23.
    • [email protected]

    Тренировочные задания к части 1 Метод отображения задание 1.docx

    Тренировочные задания к части 2Метод отображения задание 2.docx

    Презентация по материалам части 1 и части 2

    Тренировочные задания к части 3. метод отображения задание 3.docx
    Презентация по материалам части 3

    2. Задание № 5 ЕГЭ. Кодирование и декодирование данных

    Ведущая: Смирнова Елена Леонидовна, учитель информатики МОУ СОШ № 2 городского округа город Буй Костромской области

    • Посмотрите видео-материалы мастер-класса учителя и выполните тренировочные задания. Если видео-материалы просмотреть не удаётся, то скачайте презентацию и познакомьтесь с технологией выполнения задания № 5.
    • Выполненные тренировочные задания отправьте учителю на электронный адрес [email protected]
    • Получите от учителя ответ о результатах выполненной вами работы.

    Презентация по демонстрируемым материалам

    Носкин Андрей Николаевич,
    учитель информатики
    высшей квалификационной категории,
    кандидат военных наук, доцент
    ГБОУ Лицей №1575 город Москва

    Оптимизированный метод отображения для решения задачи 23 из КИМ ЕГЭ по информатике и ИКТ

    Одной из самой трудной задачей в КИМ ЕГЭ является задача 23, в которой надо найти количество различных наборов значений логических переменных, которые удовлетворяют указанному условию.
    Данная задача является едва ли не самым сложным заданием КИМ ЕГЭ по информатике и ИКТ. С ним, как правило, справляются не более 5% экзаменуемых {1}.
    Такой маленький процент учеников, которые справились с данным заданием объясняется следующим:
    - ученики могут путать (забыть) знаки логических операций;
    - математические ошибки в процессе выполнения расчетов;
    - ошибки в рассуждениях при поиске решения;
    - ошибки в процессе упрощения логических выражений;
    - учителя рекомендуют решать данную задачу, после выполнения всей работы, так как вероятность допущения
    ошибок очень велика, а «вес» задачи составляет всего лишь один первичный балл.
    Кроме того, некоторые учителя сами с трудом решают данный тип задач и поэтому стараются решать с детьми более простые задачи.
    Также усложняет ситуацию, что в данном блоке существует большое количество разнообразных задач и невозможно подобрать какое-то шаблонное решение.
    Для исправление данной ситуации педагогическим сообществом дорабатываются основные две методики решения задач данного типа: решение с помощью битовых цепочек {2} и метод отображений {3}.
    Необходимость доработки (оптимизации) данных методик обусловлена тем, что задачи постоянно видоизменяются как по структуре, так и по количеству переменных (только один тип переменных Х, два типа переменных Х и Y, три типа: X, Y, Z).
    Сложность освоения данными методиками решения задач подтверждается тем, что на сайте К.Ю. Полякова существует разборов данного типа задач в количестве 38 штук{4}. В некоторых разборах приведены более одного типа решения задачи.
    Последнее время в КИМ ЕГЭ по информатике встречаются задачи с двумя типа переменных X и Y.
    Я оптимизировал метод отображения и предлагаю своим ученикам пользоваться усовершенствованным методом.
    Это дает результат. Процент моих учеников, которые справляются с данной задачей варьируется до 43% от сдающих. Как правило, ежегодно у меня сдает ЕГЭ по информатике от 25 до 33 человек из всех 11-х классов.
    До появления задач с двумя типами переменными метод отображения ученики использовали очень успешно, но после появления в логическом выражении Y, я стал замечать, что у детей перестали совпадать ответы с тестами. Оказалось, они не совсем четко стали представлять, как составить таблицу отображений с новым типом переменной. Тогда мне пришла мысль, что для удобства надо все выражение привести к одному типу переменной, как удобно детям.
    Приведу более подробно данную методику. Для удобства буду ее рассматривать на примере системы логических выражений, приведенных в {4}.
    Сколько различных решений имеет система логических уравнений

    (x 1 ^ y 1) = (¬x 2 V ¬ y 2 )
    (x 2 ^ y 2) = (¬ x 3 V ¬ y 3 )
    ...
    (x 5 ^ y 5 ) = (¬ x 6 V ¬ y 6 )

    где x 1 , …, x 6 , y 1 , …, y 6 , - логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.
    Решение:
    1. Из анализа системы логических уравнений мы видим, что присутствует 6 переменных Х и 6 переменных У . Так как любая из этих переменных может принимать только два значения (0 и 1), то заменим эти переменные на 12 однотипных переменных, например Z.
    2. Теперь перепишем систему с новыми однотипными переменными. Сложность задачи будет заключаться во внимательной записи при замене переменных.

    (z 1 ^ z 2) = (¬z 3 V ¬ z 4 )
    (z 3 ^ z 4) = (¬ z 5 V ¬ z 6 )
    ...
    (z 9 ^ z 10 ) = (¬ z 11 V ¬ z 12)


    3. Построим таблицу, в которой переберем все варианты z 1 , z 2 , z 3 , z 4 , поскольку в первом логическом уравнении четыре переменных, то таблица будет иметь 16 строк (16=2 4); уберем из таблицы такие значения z 4 , при которых первое уравнение не имеет решения (зачеркнутые цифры).
    0 0 0 0
    1
    1 0
    1
    1 0 0
    1
    1 0
    1
    1 0 0 0
    1
    1 0
    1
    1 0 0
    1
    1 0
    1

    4. Анализируя таблицу, строим правило отображения пар переменных (например, паре Z 1 Z 2 =00 соответствует пара Z 3 Z 4 = 11) .

    5. Заполняем таблицу, вычисляя количество пар переменных, при котором система имеет решение.

    6. Складываем все результаты: 9 + 9 + 9 + 27 = 54
    7. Ответ: 54.
    Приведенная выше оптимизированная методика решения задачи 23 из КИМ ЕГЭ позволила ученикам вновь обрести уверенность и решать успешно этот тип задачи.

    Литература:

    1. ФИПИ. Методические рекомендации для учителей, подготовленные на основе анализа типичных ошибок участников ЕГЭ 2015 года по ИНФОРМАТИКЕ и ИКТ. Режим доступа: http://www.fipi.ru/sites/default/files/document/1442163533/informatika_i_ikt.pdf

    2. К.Ю. Поляков, М.А. Ройтберг. Системы логических уравнений: решение с помощью битовых цепочек. Журнал Информатика, № 12, 2014, с. 4-12. Издательский дом "Первое сентября", г.Москва.
    3. Е.А. Мирончик, Метод отображения. Журнал Информатика, № 10, 2013, с. 18-26. Издательский дом "Первое сентября", г.Москва.

    Решение систем логических уравнений методом замены переменных

    Метод замены переменных применяется, если некоторые переменные входят в состав уравнений только в виде конкретного выражения, и никак иначе. Тогда это выражение можно обозначить новой переменной.

    Пример 1.

    Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

    (x1 → х2) → (х3→ х4) = 1

    (х3 → х4) → (х5 → х6) = 1

    (х5 → х6) → (х7 → х8) = 1

    В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

    Решение:

    (x1 → х2) = y1; (х3 → х4) = y2; (х5 → х6) = y3; (х7 → х8) = y4.

    Тогда можно за­пи­сать си­сте­му в виде од­но­го урав­не­ния:

    (y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) = 1. Конъюнкция равна 1 (истинна), когда каждый операнд принимает значение 1. Т.е. каждая из импликаций должна быть истинна, а это выполняется при всех значениях, кроме (1 → 0). Т.е. в таблице значений переменных y1, y2, y3, y4 единица не должна стоять левее нуля:

    Т.е. условия выполняются для 5 наборов y1-y4.

    Т.к. y1 = x1 → x2, то значение y1 = 0 достигается на единственном наборе x1, x2: (1, 0), а значение y1 = 1 – на трех наборах x1, x2: (0,0) , (0,1), (1,1). Аналогично для y2, y3, y4.

    Поскольку каждый набор (x1,x2) для переменной y1 сочетается с каждым набором (x3,x4) для переменной y2 и т.д., то количества наборов переменных x перемножаются:

    Кол-во наборов на x1…x8

    Сло­жим ко­ли­че­ство наборов: 1 + 3 + 9 + 27 + 81 = 121.

    Ответ: 121

    Пример 2.

    Сколько существует различных наборов значений логических переменных x1, x2, ... x9, y1, y2, ... y9, которые удовлетворяют всем перечисленным ниже условиям?

    (¬ (x1 ≡ y1)) ≡ (x2 ≡ y2)

    (¬ (x2 ≡ y2)) ≡ (x3 ≡ y3)

    (¬ (x8 ≡ y8)) ≡ (x9 ≡ y9)

    В ответе не нужно перечислять все различные наборы значений переменных x1, x2, ... x9, y1, y2, ... y9, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

    Решение:

    Сде­ла­ем за­ме­ну пе­ре­мен­ных:

    (x1 ≡ y1) = z1, (x2 ≡ y2) = z2,…. ,(x9 ≡ y9) = z9

    Систему можно записать в виде одного уравнения:

    (¬ z1 ≡ z2) ∧ (¬ z2 ≡ z3) ∧ …..∧ (¬ z8 ≡ z9)

    Эквивалентность истинна, только если оба операнда равны. Решениями этого уравнения будут два набора:

    z1 z2 z3 z4 z5 z6 z7 z8 z9
    0 1 0 1 0 1 0 1 0
    1 0 1 0 1 0 1 0 1

    Т.к. zi = (xi ≡ yi), то значению zi = 0 соответствуют два набора (xi,yi): (0,1) и (1,0), а значению zi = 1 - два набора (xi,yi): (0,0) и (1,1).

    Тогда первому набору z1, z2,…, z9 соответствует 2 9 наборов (x1,y1), (x2,y2),…, (x9,y9).

    Столько же соответствует второму набору z1, z2,…, z9. Тогда всего 2 9 +2 9 = 1024 наборов.

    Ответ: 1024

    Решение систем логических уравнений методом визуального определения рекурсии.

    Этот метод применяется, если система уравнений достаточно проста и порядок увеличения количества наборов при добавлении переменных очевиден.

    Пример 3.

    Сколь­ко раз­лич­ных ре­ше­ний имеет си­сте­ма урав­не­ний

    ¬x9 ∨ x10 = 1,

    где x1, x2, … x10 - ло­ги­че­ские пе­ре­мен­ные?

    В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний x1, x2, … x10, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

    Решение:

    Решим первое уравнение. Дизъюнкция равна 1, если хотя бы один из ее операндов равен 1. Т.е. решениями являются наборы:

    Для x1=0 существуют два значения x2 (0 и 1), а для x1=1 только одно значение x2 (1), такие, что набор (x1,x2) является решением уравнения. Всего 3 набора.

    Добавим переменную x3 и рассмотрим второе уравнение. Оно аналогично первому, значит для x2=0 существуют два значения x3 (0 и 1), а для x2=1 только одно значение x3 (1), такие, что набор (x2,x3) является решением уравнения. Всего 4 набора.

    Несложно заметить, что при добавлении очередной переменной добавляется один набор. Т.е. рекурсивная формула количества наборов на (i+1) переменных:

    N i +1 = N i + 1. Тогда для десяти переменных получим 11 наборов.

    Ответ: 11

    Решение систем логических уравнений различного типа

    Пример 4.

    Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x 1 , ..., x 4 , y 1 ,..., y 4 , z 1 ,..., z 4 , ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

    (x 1 → x 2) ∧ (x 2 → x 3) ∧ (x 3 → x 4) = 1

    (y 1 → y 2) ∧ (y 2 → y 3) ∧ (y 3 → y 4) = 1

    (z 1 → z 2) ∧ (z 2 → z 3) ∧ (z 3 → z 4) = 1

    x 4 ∧ y 4 ∧ z 4 = 0

    В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x 1 , ..., x 4 , y 1 , ..., y 4 , z 1 , ..., z 4 , при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств.

    В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

    Решение:

    Заметим, что три уравнения системы одинаковы на различных независимых наборах переменных.

    Рассмотрим первое уравнение. Конъюнкция истинна (равна 1) только тогда, когда все ее операнды истинны (равны 1). Импликация равна 1 на всех наборах, кроме (1,0). Значит, решением первого уравнения будут такие наборы x1, x2, x3, x4, в которых 1 не стоит левее 0 (5 наборов):

    Аналогично, решениями второго и третьего уравнений будут абсолютно такие же наборы y1,…,y4 и z1,…, z4.

    Теперь проанализируем четвертое уравнение системы: x 4 ∧ y 4 ∧ z 4 = 0. Решением будут все наборы x4, y4, z4, в которых хотя бы одна из переменных равна 0.

    Т.е. для x4 = 0 подойдут все возможные наборы (y4, z4), а для x4 = 1 подойдут наборы (y4, z4), в которых присутствует хотя бы один ноль: (0, 0), (0,1) , (1,0).

    Кол-во наборов

    Общее количество наборов 25 + 4*9 = 25 + 36 = 61.

    Ответ: 61

    Решение систем логических уравнений методом построения рекуррентных формул

    Метод построения рекуррентных формул применяется при решении сложных систем, в которых порядок увеличения количества наборов неочевиден, а построение дерева невозможно из-за объемов.

    Пример 5.

    Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, … x7, y1, y2, … y7, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

    (x1 ∨ y1) ∧ ((x2 ∧ y2) → (x1 ∧ y1)) = 1

    (x2 ∨ y2) ∧ ((x3 ∧ y3) → (x2 ∧ y2)) = 1

    (x6 ∨ y6) ∧ ((x7 ∧ y7) → (x6 ∧ y6)) = 1

    В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ..., x7, y1, y2, ..., y7, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

    Решение:

    Заметим, что первые шесть уравнений системы одинаковы и отличаются только набором переменных. Рассмотрим первое уравнение. Его решением будут следующие наборы переменных:

    Обозначим:

    число наборов (0,0) на переменных (x1,y1) через A 1 ,

    число наборов (0,1) на переменных (x1,y1) через B 1 ,

    число наборов (1,0) на переменных (x1,y1) через C 1 ,

    число наборов (1,1) на переменных (x1,y1) через D 1 .

    число наборов (0,0) на переменных (x2,y2) через A 2 ,

    число наборов (0,1) на переменных (x2,y2) через B 2 ,

    число наборов (1,0) на переменных (x2,y2) через C 2 ,

    число наборов (1,1) на переменных (x2,y2) через D 2 .

    Из дерева решений видим, что

    A 1 =0, B 1 =1, C 1 =1, D 1 =1.

    Заметим, что набор (0,0) на переменных (x2,y2) получается из наборов (0,1), (1,0) и (1,1) на переменных (x1,y1). Т.е. A 2 =B 1 +C 1 +D 1 .

    Набор (0,1) на переменных (x2,y2) получается из наборов (0,1), (1,0) и (1,1) на переменных (x1,y1). Т.е. B 2 =B 1 +C 1 +D 1 .

    Аналогично рассуждая, заметим, что С 2 =B 1 +C 1 +D 1 . D 2 = D 1 .

    Таким образом, получаем рекуррентные формулы:

    A i+1 = B i + C i + D i

    B i+1 = B i + C i + D i

    C i+1 = B i + C i + D i

    D i+1 = A i +B i + C i + D i

    Составим таблицу

    Наборы Обозн . Формула

    Количество наборов

    i=1 i=2 i=3 i=4 i=5 i=6 i=7
    (0,0) A i A i+1 =B i +C i +D i 0 3 7 15 31 63 127
    (0,1) B i B i+1 =B i +C i +D i 1 3 7 15 31 63 127
    (1,0) C i C i+1 =B i +C i +D i 1 3 7 15 31 63 127
    (1,1) D i D i+1 =D i 1 1 1 1 1 1 1

    Последнему уравнению (x7 ∨ y7) = 1 удовлетворяют все наборы, кроме тех, в которых x7=0 и y7=0. В нашей таблице число таких наборов A 7 .

    Тогда общее количество наборов равно B 7 + C 7 + D 7 = 127+127+1 = 255

    Ответ: 255

    Читайте также: