Как проверить вентиляцию в квартире: правила проверки вентиляционных каналов. Измерение расхода воздуха в канале

Позволяет практически точно определить расход воздуха. При использовании устройства диаметром 60-100 mm можно достичь минимальной погрешности измерений при определении скорости на вентиляционной решетке. Если предстоит снятие показателей внутри воздуховода, следует использовать анемометр с небольшим диаметром: в пределах 16-25 mm. Для определения скорости в труднодоступных участках воздуховодов рекомендуется воспользоваться телескопическим зондом.

Определение расхода воздуха

Этап первый. Определение зоны для создания рабочего отверстия. Основное требование — это должен быть прямой участок, минимальная длина которого составляет 5d, расстояние от изгиба трубы до точки сверления — не менее 3d, и до следующей смены направления — от 2d и более. (для справки: d=диаметр воздуховода). Важно! Необходимо позаботиться о том, чтобы диаметр отверстия совпадал с размером зонда.

Этап второй. Проведение нескольких измерений, количество определяется согласно ГОСТ 12.3.01 8-79. Расчет усредненной скорости в некоторых типах анемометров осуществляется автоматически. Если подобная функция отсутствует, рассчитать среднеарифметическое значение придется самостоятельно.

При осуществлении измерений стоит учитывать ряд ограничений.
Не использовать термоанемометры при предполагаемой скорости рабочей среды свыше 20 м/с, так как это может привести к повреждению датчика.
Трубку Пито не рекомендуется эксплуатировать в рабочей среде с большим количеством засоренности, аналогичное требование выдвигается и в отношении термоанемометра.

В газопроводах с высокой температурой рабочей среды недопустимо использование устройств, содержащих элементы из пластика, так как он с большой вероятностью может деформироваться.

Для расчета объемного расхода воздуха следует полученную скорость умножить на площадь сечения трубопровода. Есть и еще один существенный момент.

Для точного определения скорости следует воспользоваться формулой:
V=Vср.изм.+t*.+p* Vср. изм
Значения t и p необходимо взять из таблицы:

Температура воздуха p t Pa
50 0,03 0,05 720
40 0,02 0,03 730
30 0,01 0,02 740
20 0,01 0 750
10 0 -0,02 760
0 -0,01 -0,03 770
-10 -0,01 -0,05 780
-20 - -0,07 -
-30 - -0,09 -
-40 - -0,11 -
-50 - -0,13 -

Поправки на давление воздуха и его температуру позволяют уменьшить погрешность измерений. Для расчета площади сечения следует использовать формулу:
S=π(d/2)2
Объемный расход:
L=F*Vсредняя
При измерении скорости воздуха важно правильно расположить датчик устройства. Чем больше его отклонение от рекомендованного, тем существеннее будет погрешность расчетов.

Evaluation of the Airflow Determination Precision in Ventilation Systems During their Rating

K. E. Taratyrkin, D. V. Chernoivanov

Keywords : ventilation system, airflow rate, ultimate relative accuracy of airflow calculation, mean square error, turbulent flow pulsation

Startup of ventilation systems and their rating are carried out in accordance with GOST 12.3.018-79 "Ventilation systems. Aerodynamic test methods" and SP "73.13330.2012 "Inside sanitary and technical systems of buildings". The article analyzes the main factors affecting the precision of determination of airflow rate in ventilation systems, impact of some of these factors is evaluated quantitatively.

Описание:

Пусконаладка систем вентиляции и их паспортизация проводятся в соответствии с ГОСТ 12.3.018-79 «Системы вентиляционные. Методы аэродинамических испытаний» и СП 73.13330.2012 «Внутренние санитарно-технические системы зданий». В статье проанализированы основные факторы, влияющие на точность определения расхода в системах вентиляции, влияние некоторых из этих факторов оценено количественно.

К. Е. Таратыркин , директор наладочной организации по воздуху ООО «АК-ИТР», [email protected]

Д. В. Черноиванов , инженер, ООО ФПК «Космос-Нефть-Газ»

Пусконаладка систем вентиляции и их паспортизация проводятся в соответствии с ГОСТ 12.3.018-79 «Системы вентиляционные. Методы аэродинамических испытаний» и СП 73.13330.2012 «Внутренние санитарно-технические системы зданий» . ГОСТ 12.3.018-79 содержит требования к подготовке и проведению испытаний, требования к аппаратуре для измерения скоростей потока, а также определяет положение мерного сечения, количество точек замера и их координаты и содержит расчет погрешности измерения расхода в зависимости от специфики конкретного проводимого испытания – от испытательного оборудования, характеристик мерного сечения, атмосферных условий. В СП 73.13330.2012 определено значение максимального отклонения фактического расхода воздуха от предусмотренного в проектной документации. Согласно данному своду правил значение отклонения не должно превышать ±8 %, однако на практике при проведении аэродинамических испытаний не всегда удается получить результаты, удовлетворяющие указанному критерию. А ведь несоответствие расхода на величину более ±8 % является поводом для отказа от приемки системы вентиляции со всеми вытекающими отсюда последствиями. Причин несоответствия может быть множество, но вся ответственность в конечном счете ложится на организацию, производящую монтаж.

Однако давайте задумаемся: насколько требования, указанные в СП 73.13330.2012, выполнимы при проведении замеров в «полевых» условиях? Существуют ли объективные предпосылки для пересмотра нормы ±8 %? Размышления авторов по этому вопросу представлены в данной статье.

Наиболее вероятные причины отклонений

Естественно, причин несоответствия замеренного расхода проектному много, и, к сожалению, многие из них не зависят от качества монтажа вентиляционной системы или от мастерства и технической оснащенности наладчиков.

Во-первых , как известно, расход в системе зависит от ее аэродинамического сопротивления. При разработке проекта рассчитываются проектный расход, сопротивление системы воздуховодов, и, исходя из этого, подбирается соответствующий вентилятор. При монтаже вентиляционной системы ее фактические размеры будут несколько отличаться от проектных. Некоторые воздуховоды окажутся чуть длиннее, некоторые – чуть короче, радиусы поворота отводов могут оказаться чуть круче, и поэтому отводы будут создавать большее сопротивление. Воздуховоды и фасонные элементы имеют конструктивные допуски, поэтому фактические размеры у разных производителей могут отличаться. Шероховатость стенок каналов тоже может несколько отличаться от той, что предусмотрена расчетом. В совокупности все эти небольшие конструктивные отклонения вентиляционной сети могут привести к несоответствию расхода в системе расчетному.

Во-вторых , конструктивные допуски вентиляционной установки могут приводить к отклонению от номинала по расходу воздуха. Данное отклонение регламентируется в ГОСТ ИСО 5802–2012 «Вентиляторы промышленные. Испытания в условиях эксплуатации» и может составлять до ±1,5 % по объемному расходу.

В-третьих , система вентиляции является открытой и определенным образом реагирует на изменение параметров окружающей среды. Приведем пример. Вентиляционная установка находится на крыше. Зима, мороз. В помещении включено отопление. Перепад температур и перепад высот создают естественную тягу, направленную из помещения. При работе вентиляционной установки эта тяга создает дополнительное сопротивление, и расход воздуха уменьшается.

Порывы ветра вблизи вентиляционной установки вызывают изменение статического давления. Это приводит к колебанию расхода вентилятора и, как следствие, скорости в мерном сечении. Поэтому в ветреную погоду точность аэродинамических испытаний может быть снижена. Таким образом, ввиду открытости вентиляционной системы колебания параметров окружающей среды – давления, температуры, влажности, скорости и направления ветра – оказывают влияние на расход воздуха.

Следующая большая группа погрешностей связана с самой методикой испытаний и с техникой проведения измерений. Эти погрешности зависят от точности показаний приборов, точности позиционирования измерительного инструмента, правильности выбора мерного сечения и т. д. Большинство этих погрешностей учтено в ГОСТ 12.3.018–79 при оценке общей погрешности методики.

Погрешность методики определения расхода по ГОСТ 12.3.018

В соответствии с ГОСТ 12.3.018–79 предельная относительная погрешность определения расхода воздуха в процентах выражается следующей формулой:

δ L = (2σ L + δφ), (1)

где δφ – предельная относительная погрешность определения расхода воздуха, связанная с неравномерностью распределения скоростей в мерном сечении;

σ L – среднеквадратичная относительная погрешность, обусловленная неточностью измерений в процессе испытаний.

Значение погрешности δφ зависит от формы воздуховода, количества точек измерения и расстояния от места возмущения потока до мерного сечения. В табл. 1 приведены значения погрешности δφ, представленные в ГОСТ 12.3.018–79.

Таблица 1
Форма
мерного
сечения
Число точек измерений δ, %, при расстоянии от места возмущения потока до мерного сечения в гидравлических диаметрах D h
1 2 3 5 > 5
Круг 4 20 16 12 6 3
8 16 12 10 5 2
12 12 8 6 3 2
Прямоугольник 4 24 20 15 8 4
16 12 8 6 3 2

Как следует из табл. 1, отклонение по расходу воздуха, вызванное неравномерностью профиля скорости в воздуховоде при расположении мерного сечения на расстоянии трех гидравлических диаметров (минимально допустимое в расстояние) от места возмущения потока, может составить до 15 %. Значение погрешности σ L определяется по формуле:

где σ p , σ B , σ t – среднеквадратичные погрешности измерений динамического давления P d потока, барометрического давления B a , температуры t потока соответственно;

σ D – среднеквадратичная погрешность определения размеров мерного сечения воздуховода; при 100 мм ≤ D h 300 мм величина σD = ±3 %, при Dh > 300 мм величина σ D = ±2 %.

Значения σ p , σ B , σ t по ГОСТ 12.3.018–79 представлены в табл. 2.

Как следует из табл. 2, значения погрешностей зависят от класса точности прибора и от того, в какой части шкалы прибора находится замеряемое значение скорости. Однако в последнее время появились приборы, которые имеют более высокий класс точности, а также более точно измеряют скорость воздуха в нижней части шкалы прибора. Возможно, это и послужило поводом к ужесточению требований и снижению значения допустимого отклонения до ±8 % (до 2012 года допустимое отклонение составляло ±10 %).

Приведем пример расчета предельной погрешности измерения расхода, взятый из ГОСТ 12.3.018–79.

«… Мерное сечение расположено на расстоянии 3 диаметров за коленом воздуховода диаметром 300 мм (т. е. δ D = ±3 %). Измерения производят комбинированным приемником давления в 8 точках мерного сечения (т. е. по табл. 1 σ φ = +10 %). Класс точности приборов (дифманометр, барометр, термометр) – 1,0. Отсчеты по всем приборам производятся примерно в середине шкалы, т. е. по табл. 2, σ p = σ B = σ t = ± 1,0 %. Предельная относительная погрешность измерения расхода воздуха, %, составит: … ».


Таким образом, мы видим, что методика аэродинамических испытаний, описанная в ГОСТ 12.3.018–79, во многих случаях имеет погрешность больше, чем допустимое в СП 73.13330.2012 отклонение замеренного расхода от проектного. В некоторых случаях погрешность может превышать 20 %.

Влияние турбулентных пульсаций

В последнее время чувствительность приборов для определения скорости воздуха в воздуховоде значительно выросла. Современные приборы стали чувствительны к пульсациям турбулентного потока, которые, в свою очередь, могут внести некоторую погрешность в результаты измерений.

Определим погрешность, вносимую турбулентными пульсациями потока. На рис. 1 представлен принципиальный график изменения продольной составляющей мгновенной скорости в произвольной точке сечения в зависимости от времени.

Из рис. 1 видно, что мгновенную скорость в определенной точке пространства можно представить как сумму осредненной по времени скорости и пульсации скорости:

В соответствии с теорией Прандтля пульсационная составляющая продольной скорости потока зависит от пути смешения и градиента продольной скорости от оси к стенке. Путь смешения представляет собой длину пробега макроскопического турбулентного объема жидкости (газа) и определяется, как:

l = ky , (4)

где k – экспериментальная постоянная (постоянная Кармана) k = 0,4;

y – расстояние от стенки трубопровода до произвольной точки сечения.

Пульсационная составляющая определяется выражением:

Из теории Прандтля следует, что абсолютное значение пульсаций скорости увеличивается от стенки канала к его оси, а процентное отношение пульсационной составляющей скорости к осредненной по времени скорости в любой точке сечения будет постоянно для потока с заданными параметрами:

Результаты расчета пульсационной составляющей скорости в зависимости от скорости потока в воздуховоде круглого сечения диаметром 400 мм представлены в табл. 3. При этом профиль скорости в воздуховоде принимался в соответствии со степенным законом:


(7)

где u – осредненная по времени скорость в произвольной точке сечения;

u 0 – осредненная по времени скорость на оси трубопровода;

R – радиус трубопровода;

η – эмпирический коэффициент.

Эмпирический коэффициент η зависит от числа Рейнольдса и определяется по графику (рис. 2).

Точки замеров, обозначенные в табл. 3 (y 1 = 0,054D и y 2 = 0,28D ), соответствуют координатам замера скорости в круглых воздуховодах согласно ГОСТ 12.3.018–79. Таким образом, при проведении замеров отклонение замеренной скорости от осредненной по времени, вызванное турбулентными пульсациями потока, может составлять ±5…±7 %.

Среднеквадратичное отклонение пульсационной составляющей от осредненной по времени скорости при этом будет равно:

Следовательно, значение среднеквадратичного отклонения составит приблизительно 3,5…5 %.

Оценим вероятность получения погрешности измерения скорости более 1 % либо в большую, либо в меньшую сторону от средней скорости. Оценку вероятности проведем для одного, трех и десяти замеров. Для этого условимся, что результаты условных замеров подчиняются закону нормального распределения случайной величины. В таком случае вероятность получить отклонение, превышающее среднее значение скорости более чем на 1 %, составит:

  • для одного измерения – 42 %;
  • для трех измерений – 7,4 %;
  • для десяти измерений – 0,17 %.

Приведенные выше результаты расчетов показывают, что влияние турбулентных пульсаций скорости может ощущаться лишь при небольшом количестве замеров. Например, измерив скорость в одной точке три раза, мы с вероятностью 7,4 % ошибемся более чем на +1 % или на –1 %. При этом результаты замеров скорости в других точках сечения с большой долей вероятности нивелируют это отклонение.

Опыт других стран

Европейские нормы, которые регламентируют приемку систем вентиляции, менее жесткие, чем российские. Например, стандарт EN 12599 «Вентиляция для зданий – Процедуры проведения испытаний и измерительные методы для передачи систем кондиционирования воздуха и систем вентиляции» допускает отклонение расхода всей системы от проектного ±15 %, а для каждого отдельного помещения допускается отклонение до ±20 %. При таких нормативах сдача и наладка систем вентиляции становятся вполне решаемой задачей и перестает быть «подвигом».

В работе предпринята хорошая попытка разобраться в вопросе, какое отклонение расхода считать справедливым. Авторы провели прямое численное моделирование турбулентных течений при числах Рейнольдса, характерных для вентиляционных систем. Численное моделирование проводилось с применением специализированного программного обеспечения. Результаты, полученные по компьютерной модели, сверялись с данными экспериментов . При этом была показана хорошая сходимость модели с опытом. Далее было проведено исследование отклонения фактического расхода, определенного по модели, от замеренного по методикам стандартов ISO 3966, EN 12599, Pr EN 16211 в тех же модельных течениях. Методики указанных выше стандартов аналогичны ГОСТ 12.3.018–79, но отличаются количеством точек замеров и их расположением. Также было исследовано влияния удаления мерного сечения от мест возмущения потока (от отводов). Некоторые результаты, полученные в для прямоугольных воздуховодов, приведены в табл. 4.

Таблица 4
Схема
испытаний
Количество осей
(точек)
Макс. погрешность, %
L / D, расстояние от места возмущения
5 10 45
ISO 3966 5 (25) 4 4 2
10 7 7
8 8 5
17 11 9
15 6 4

Нестандартный метод

15 7 7

Согласно и профиль скорости в воздуховоде полностью устанавливается лишь на расстоянии, равном приблизительно 45 гидравлическим диаметрам от места возмущения.

Заключение

В данной статье были проанализированы основные факторы, влияющие на точность определения расхода в системах вентиляции, причем влияние некоторых из этих факторов было оценено количественно. Например, ГОСТ 12.3.018–79 допускает погрешность описанной в нем методики определения расхода воздуха более 20 %. Отклонение параметров вентиляционной установки от номинала может составлять до ±1,5 % .

EN 12599, регламентирующий приемку систем вентиляции в Европе, определяет максимальное отклонение замеренного расхода от проектного не более ±15 % для системы в целом, а для отдельных помещений не более ±20 % .

Ввиду объективных обстоятельств, изложенных в данной статье, критерий приемки системы вентиляции, определенный в СП 73.13330.2012, – максимальное отклонение замеренного расхода от проектного не более ±8 % – является необоснованным, не имеющим под собой никакой – ни научной, ни практической базы. Поэтому авторам представляется необходимым поднять вопрос о пересмотре значения допускаемого отклонения в сторону увеличения согласно последним достижениям теории и практики.

Литература

  1. ГОСТ 12.3.018–79 «Системы вентиляционные. Методы аэродинамических испытаний». – М., 1979.
  2. СП 73.13330.2012 «Внутренние санитарно-технические системы зданий». – М., 2012.
  3. ГОСТ ИСО 5802–2012 «Вентиляторы промышленные. Испытания в условиях эксплуатации». – М., 2012.
  4. Абрамович Г. Н. Прикладная газовая динамика. – М.: Госуд. изд. техн.-теор. лит-ры, 1953.
  5. EN 12599 «Вентиляция для зданий – Процедуры проведения испытаний и измерительные методы для передачи систем кондиционирования воздуха и систем вентиляции». 2012.
  6. Care I., Bonthoux F., Fountane J.-R. Measurement of air flow in duct by velocity measurements. EDP Sciences, 2014.
  7. Bonthoux F., Fountane J.-R. Measurement of flow rate in a duct by investigation of the velocity field. Uncertainty linked to position and number of measurement points. – Roomvent, 2002.

Введение

Пусконаладка систем вентиляции и их паспортизация проводятся в соответствии с ГОСТ 12.3.018-79 «Системы вентиляционные. Методы аэродинамических испытаний» (далее по тексту ) и СП73.13330.2012 «Внутренние санитарно-технические системы зданий» (далее по тексту ). Стандарт содержит требования к подготовке и проведению испытаний, требования к аппаратуре для измерения скоростей потока, а также определяет положение мерного сечения, количество точек замера и их координаты. Так же, содержит расчет погрешности измерения расхода в зависимости от специфики конкретного проводимого испытания – от испытательного оборудования, характеристик мерного сечения, атмосферных условий. В своде правил , определено значение максимального отклонения фактического расхода воздуха от предусмотренного в проектной документации. Согласно значение отклонения не должно превышать ±8%, однако, на практике, при проведении аэродинамических испытаний не всегда удается получить результаты, удовлетворяющие указанному критерию. А ведь несоответствие расхода на величину более ±8 % является поводом для отказа от приемки системы вентиляции со всеми вытекающими отсюда последствиями. Причин несоответствия может быть множество, но вся ответственность, в конечном счете, ложится на организацию производящую монтаж.
Однако давайте задумаемся, насколько требования, указанные в , выполнимы при проведении замеров в «полевых» условиях? Существуют объективные предпосылки для пересмотра нормы ± 8 %. Размышления авторов по этому вопросу представлены в данной статье.

Наиболее вероятные причины отклонений

Естественно, причин несоответствия замеренного расхода проектному много, и к сожалению, многие из них не зависят от качества монтажа вентиляционной системы или от мастерства и технической оснащенности наладчиков.
Во-первых, как известно, расход в системе зависит от ее аэродинамического сопротивления. При разработке проекта рассчитывается проектный расход, сопротивление системы воздуховодов, и, исходя из этого, подбирается соответствующий вентилятор. При монтаже вентиляционной системы её фактические размеры будут несколько отличаться от проектных. Некоторые воздуховоды окажутся чуть длиннее, некоторые – чуть короче, радиусы поворота отводов могут оказаться чуть круче, и поэтому отводы будут создавать большее сопротивление. Воздуховоды и фасонные элементы имеют конструктивные допуски, поэтому фактические размеры у разных производителей могут отличаться. Шероховатость стенок каналов тоже может несколько отличаться от той, что предусмотрена расчетом. В совокупности, все эти небольшие конструктивные отклонения вентиляционной сети могут привести к несоответствию расхода в системе расчетному.
Во-вторых, конструктивные допуски вентиляционной установки могут приводить к отклонению от номинала по расходу воздуха. Данное отклонение регламентируется в и может составлять до ±1,5 % по объемному расходу.
В-третьих, система вентиляции является открытой системой, и определенным образом реагирует на изменение параметров окружающей среды. Приведем пример. Вентиляционная установка находится на крыше. Зима, мороз. В помещении включено отопление. Перепад температур и перепад высот создают естественную тягу, направленную из помещения. При работе вентиляционной установки эта тяга создает дополнительное сопротивление, и расход воздуха уменьшается.
Порывы ветра вблизи вентиляционной установки вызывают изменение статического давления. Это приводит к колебанию расхода вентилятора, и, как следствие, скорости в мерном сечении. Поэтому, в ветреную погоду точность аэродинамических испытаний может быть снижена.
Таким образом, ввиду открытости вентиляционной системы, колебания параметров окружающей среды – давления, температуры, влажности, скорости и направления ветра, оказывают влияние на расход воздуха.
Следующая большая группа погрешностей связана с самой методикой испытаний, и с техникой проведения измерений. Это погрешности, зависят от точности показаний приборов, точности позиционирования измерительного инструмента, правильности выбора мерного сечения и т.д. Большинство этих погрешностей учтено в при оценке общей погрешности методики.

Погрешность методики определения расхода по ГОСТ 12.3.018

В соответствии с предельная относительная погрешность определения расхода воздуха в процентах выражается следующей формулой:

δ L =(2σ L +δ φ) (1)

где: σ L – предельная относительная погрешность определения расхода воздуха, связанная с неравномерностью распределения скоростей в мерном сечении; δ φ - среднеквадратичная относительная погрешность, обусловленная неточностью измерений в процессе испытаний.
Значение погрешности δ φ , зависит от формы воздуховода, количества точек измерения и расстояния от места возмущения потока до мерного сечения. В таблице 1 приведены значения погрешности δ φ , представленные в .

Как следует из таблицы 1, отклонение по расходу воздуха, вызванное неравномерностью профиля скорости в воздуховоде при расположении мерного сечения на расстоянии 3 гидравлических диаметров (минимально допустимое в расстояние) от места возмущения потока может составить до 15%.

Значение погрешности определяется по формуле


где σ p , σ B , σ t – среднеквадратичные погрешности измерений динамического давления Pd потока, барометрического давления Ba, температуры t потока соответственно;

σ D – среднеквадратичная погрешность определения размеров мерного сечения воздуховода; при 100 мм ≤ Dh300 мм величина σD = ±3 %, при Dh > 300 мм величина σD= ±2 %.

Значения σp, σB, σt по ГОСТ 12.3.018–79 представлены в табл. 2.


Как следует из табл. 2, значения погрешностей зависят от класса точности прибора и от того, в какой части шкалы прибора находится замеряемое значение скорости. Однако в последнее время появились приборы, которые имеют более высокий класс точности, а также более точно измеряют скорость воздуха в нижней части шкалы прибора. Возможно, это и послужило поводом к ужесточению требований и снижению значения допустимого отклонения до ±8 % (до 2012 года допустимое отклонение составляло ±10 %).

Приведем пример расчета предельной погрешности измерения расхода, взятый из ГОСТ 12.3.018–79.

«... Мерное сечение расположено на расстоянии 3 диаметров за коленом воздуховода диаметром 300 мм (т. е. δD = ±3 %). Измерения производят комбинированным приемником давления в 8 точках мерного сечения (т. е. по табл. 1 σφ = +10 %). Класс точности приборов (дифманометр, барометр, термометр) – 1,0. Отсчеты по всем приборам производятся примерно в середине шкалы, т. е. по табл. 2, σp = σB = σt = ± 1,0 %. Предельная относительная погрешность измерения расхода воздуха, %, составит:


Таким образом, мы видим, что методика аэродинамических испытаний, описанная в ГОСТ 12.3.018–79, во многих случаях имеет погрешность больше, чем допустимое в СП 73.13330.2012 отклонение замеренного расхода от проектного. В некоторых случаях погрешность может превышать 20 %.

Влияние турбулентных пульсаций

В последнее время чувствительность приборов для определения скорости воздуха в воздуховоде значительно выросла. Современные приборы стали чувствительны к пульсациям турбулентного потока, которые, в свою очередь, могут внести некоторую погрешность в результаты измерений.

Определим погрешность, вносимую турбулентными пульсациями потока. На рис. 1 представлен принципиальный график изменения продольной составляющей мгновенной скорости в произвольной точке сечения в зависимости от времени.


Из рис. 1 видно, что мгновенную скорость в определенной точке пространства можно представить как сумму осредненной по времени скорости и пульсации скорости:

В соответствии с теорией Прандтля пульсационная составляющая продольной скорости потока зависит от пути смешения и градиента продольной скорости от оси к стенке. Путь смешения представляет собой длину пробега макроскопического турбулентного объема жидкости (газа) и определяется, как:

l = ky , (4)

где k – экспериментальная постоянная (постоянная Кармана) k = 0,4; y – расстояние от стенки трубопровода до произвольной точки сечения.

Пульсационная составляющая определяется выражением:

Результаты расчета пульсационной составляющей скорости в зависимости от скорости потока в воздуховоде круглого сечения диаметром 400 мм представлены в табл. 3. При этом профиль скорости в воздуховоде принимался в соответствии со степенным законом:

где u – осредненная по времени скорость в произвольной точке сечения;

u 0 – осредненная по времени скорость на оси трубопровода;

R – радиус трубопровода;

η – эмпирический коэффициент.

Эмпирический коэффициент η зависит от числа Рейнольдса и определяется по графику (рис. 2).

Рисунок 2. Зависимость коэффициента n от числа Рейнольдса

Точки замеров, обозначенные в табл. 3 (y 1 = 0,054D и y 2 = 0,28D), соответствуют координатам замера скорости в круглых воздуховодах согласно ГОСТ 12.3.018–79. Таким образом, при проведении замеров отклонение замеренной скорости от осредненной по времени, вызванное турбулентными пульсациями потока, может составлять ±5...±7 %.


Среднеквадратичное отклонение пульсационной составляющей от осредненной по времени скорости при этом будет равно:

Следовательно, значение среднеквадратичного отклонения составит приблизительно 3,5...5 %.

Оценим вероятность получения погрешности измерения скорости более 1 % либо в большую, либо в меньшую сторону от средней скорости. Оценку вероятности проведем для одного, трех и десяти замеров. Для этого условимся, что результаты условных замеров подчиняются закону нормального распределения случайной величины. В таком случае вероятность получить отклонение, превышающее среднее значение скорости более чем на 1 %, составит:

для одного измерения – 42 %;
для трех измерений – 7,4 %;
для десяти измерений – 0,17 %.
Приведенные выше результаты расчетов показывают, что влияние турбулентных пульсаций скорости может ощущаться лишь при небольшом количестве замеров. Например, измерив скорость в одной точке три раза, мы с вероятностью 7,4 % ошибемся более чем на +1 % или на –1 %. При этом результаты замеров скорости в других точках сечения с большой долей вероятности нивелируют это отклонение.

Опыт других стран

Европейские нормы, которые регламентируют приемку систем вентиляции, менее жесткие, чем российские. Например, стандарт EN 12599 «Вентиляция для зданий – Процедуры проведения испытаний и измерительные методы для передачи систем кондиционирования воздуха и систем вентиляции» допускает отклонение расхода всей системы от проектного ±15 %, а для каждого отдельного помещения допускается отклонение до ±20 %. При таких нормативах сдача и наладка систем вентиляции становятся вполне решаемой задачей и перестает быть «подвигом».

В работе предпринята хорошая попытка разобраться в вопросе, какое отклонение расхода считать справедливым. Авторы провели прямое численное моделирование турбулентных течений при числах Рейнольдса, характерных для вентиляционных систем. Численное моделирование проводилось с применением специализированного программного обеспечения. Результаты, полученные по компьютерной модели, сверялись с данными экспериментов . При этом была показана хорошая сходимость модели с опытом. Далее было проведено исследование отклонения фактического расхода, определенного по модели, от замеренного по методикам стандартов ISO 3966, EN 12599, Pr EN 16211 в тех же модельных течениях. Методики указанных выше стандартов аналогичны ГОСТ 12.3.018–79, но отличаются количеством точек замеров и их расположением. Также было исследовано влияния удаления мерного сечения от мест возмущения потока (от отводов). Некоторые результаты, полученные в для прямоугольных воздуховодов, приведены в табл. 4.


Согласно и профиль скорости в воздуховоде полностью устанавливается лишь на расстоянии, равном приблизительно 45 гидравлическим диаметрам от места возмущения.

Заключение

В данной статье были проанализированы основные факторы, влияющие на точность определения расхода в системах вентиляции, причем влияние некоторых из этих факторов было оценено количественно. Например, ГОСТ 12.3.018–79 допускает погрешность описанной в нем методики определения расхода воздуха более 20 %. Отклонение параметров вентиляционной установки от номинала может составлять до ±1,5 % .

EN 12599, регламентирующий приемку систем вентиляции в Европе, определяет максимальное отклонение замеренного расхода от проектного не более ±15 % для системы в целом, а для отдельных помещений не более ±20 % .

Ввиду объективных обстоятельств, изложенных в данной статье, критерий приемки системы вентиляции, определенный в СП 73.13330.2012, – максимальное отклонение замеренного расхода от проектного не более ±8 % – является необоснованным, не имеющим под собой никакой – ни научной, ни практической базы. Поэтому авторам представляется необходимым поднять вопрос о пересмотре значения допускаемого отклонения в сторону увеличения согласно последним достижениям теории и практики.

Литература

1. ГОСТ 12.3.018–79 «Системы вентиляционные. Методы аэродинамических испытаний». – М., 1979.
2. СП 73.13330.2012 «Внутренние санитарно-технические системы зданий». – М., 2012.
3. ГОСТ ИСО 5802–2012 «Вентиляторы промышленные. Испытания в условиях эксплуатации». – М., 2012.
4. Абрамович Г. Н. Прикладная газовая динамика. – М.: Госуд. изд. техн.-теор. лит-ры, 1953.
5. EN 12599 «Вентиляция для зданий – Процедуры проведения испытаний и измерительные методы для передачи систем кондиционирования воздуха и систем вентиляции». 2012.
6. Care I., Bonthoux F., Fountane J.-R. Measurement of air flow in duct by velocity measurements. EDP Sciences, 2014.
7. Bonthoux F., Fountane J.-R. Measurement of flow rate in a duct by investigation of the velocity field. Uncertainty linked to position and number of measurement points. – Roomvent, 2002

СИСТЕМА СТАНДАРТОВ БЕЗОПАСНОСТИ ТРУДА

СИСТЕМЫ ВЕНТИЛЯЦИОННЫЕ

МЕТОДЫ АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЙ

ГОСТ 12.3.018-79

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Система стандартов безопасности труда

СИСТЕМЫ ВЕНТИЛЯЦИОННЫЕ

Методы аэродинамических испытаний

Occupational safety standards system.

Ventilation systems.

Aerodinamical tests methods

ГОСТ

12.3.018-79

Постановлением Государственного комитета СССР по стандартам от 5 сентября 1979 г. № 3341 срок действия установлен

с 01.01. 1981 г.

до 01.01. 1986 г.

Настоящий стандарт распространяется на аэродинамические испытания вентиляционных систем зданий и сооружений.

Стандарт устанавливает методы измерений и обработки результатов при проведении испытаний вентиляционных систем и их эле­ментов для определения расходов воздуха и потерь давления.

1. МЕТОД ВЫБОРА ТОЧЕК ИЗМЕРЕНИЙ

1.1. Для измерения давлений и скоростей движения воздуха в воздуховодах (каналах) должны быть выбраны участки с распо­ложением мерных сечений на расстояниях не менее шести гидрав­лических диаметров D h , м за местом возмущения потока (отводы, шиберы, диафрагмы и т. п.) и не менее двух гидравлических диа­метров перед ним.

При отсутствии прямолинейных участков необходимой длины допускается располагать мерное сечение в месте, делящем выбран­ный для измерения участок в отношении 3: 1 в направлении дви­жения воз­духа.

Примечание. Гидравлический диаметр определяется по формуле

где F , м 2 и П,м, соответственно, площадь и периметр сечения.

1.2. Допускается размещать мерное сечение непосредственно в месте внезапного расширения или сужения потока. При этом размер мерного сечения принимают соответствующим наименьшему сечению канала.

1.3. Координаты точек измерений давлений и скоростей, а также количество точек определяются формой и размерами мерного сечения по черт. и . Максимальное отклонение координат точек измерений от указанных на чертежах не должно превышать ±10 %. Количество измерений в каждой точке должно быть не менее трех.

Координаты точек измерения давлений

и скоростей в воздуховодах

цилиндрического сечения

Координаты точек измерения давлений и скоростей

в воздуховодах прямоугольного сечения

1.4. При использовании анемометров время измерения в каждой точке должно быть не менее 10 с.

2. АППАРАТУРА

2.1. Для аэродинамических испытаний. вентиляционных систем должна применяться следующая аппаратура:

а) комбинированный приемник давления -для измерения динамических давлений потока при скоростях движения воздуха бо­лее 5 м/с и статических давлений в установившихся потоках (черт. 3);

б) приемник полного давления - для измерения полных дав­лений потока при скоростях движения воздуха более 5 м/с (черт. 4);

в) дифференциальные манометры класса точности от 0,5 до 1,0 по ГОСТ 11161-71, ГОСТ 18140-77 и тягомеры по ГОСТ 2648-78 - для регистрации перепадов давлений;

г) анемометры по ГОСТ 6376-74 и термоанемометры -для измерения скоростей воздуха менее 5 м/с;

д) барометры класса точности не ниже 1,0 - для измерения давления в окружающей среде;

е) ртутные термометры класса точности не ниже 1,0 по ГОСТ 13646-68 и термопары -для измерения температуры воздуха;

ж) психрометры классаточностинениже 1,0 по ГОСТ 6353-52 и психрометрические термометры по ГОСТ 15055-69 -для измерения влажности воздуха.

Примечание. При измерениях скоростей воздуха, превышающих 5 м/с в потоках, где затруднено применение приемников давления, допускается ис­пользовать анемометры по ГОСТ 6376-74 и термоанемометры.

Основные размеры приемной части комбинированного

приемника давления

* Диаметр d не должен превышать 8 % внутреннего диаметра круглого или ширины (по внутреннему обмеру) прямоугольного воздуховода.

2.2. Конструкции приборов, применяемых для измерения ско­ростей и давлений запыленных потоков, должны позволятьих очи­стку от пыли в процессе эксплуатации.

2.3. Для проведения аэродинамических испытаний в пожаровзрывоопасных производствах должны применяться приборы, соответствующие категории и группе производственных помещений.

Основные размеры приемной части приемника

полного давления

* Диаметр d не должен превышать 8 % внутреннего диаметра круглого или ширины (по внутреннему обмеру) прямоугольного воздуховода.

6.2. Проведение аэродинамических испытаний не должно ухудшать проветривание и приводить к скоплению взрывоопасной концентрации газов.

ПРИЛОЖЕНИЕ

РАСЧЕТ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЯ РАСХОДА ВОЗДУХА КОМБИНИРОВАННЫМ ПРИЕМНИКОМ ДАВЛЕНИЯ В СОЧЕТАНИИ С ДИФФЕРЕНЦИАЛЬНЫМ МАНОМЕТРОМ

Из уравнений пп. 4.3-4.8 следует:

При этом предельная относительная погрешность определения расхода воздуха в процентах выражается следующей формулой:

где s L - среднеквадратичная относительная погрешность, обусловленная неточностью измерений в процессе испытаний;

d j - предельная, относительная погрешность определения расхода воздуха, связанная с неравномерностью распределения скоростей в мерном сечении; величины d j даны в табл. 1 настоящего приложения.

Величина s L представляется в виде:

где s D - среднеквадратичная погрешность определения размеров мерно­го сечения, зависящая от гидравлического диаметра воздухо­вода; при 100 мм £ Dh 300 мм величина s D = ± 3 %, при Dh > 300 мм s D = ± 2 %;

s p, s B, s t - среднеквадратичные погрешности измерений, соответ­ственно, ди­намического давления Рd потока, барометрического давления Ba, температуры t потока, величины s p, s B, s t даны в настоящего приложения.

Пользуясь табл. 1 и 2 и приведенными формулами вычисляют пре­дельную погрешность определения расхода воздуха.

Таблица 1

Предельная относительная погрешность d j , вызванная неравномерностью распределения скоростей в мерном сечении

Форма мерного­

Число точек

d , %, при расстоянии от места возмущения потока до мерного сечения в гидравлических диаметрах D h

измерений

Производственный контроль или проверка эффективности работы вентиляционной системы это одно из основных условий грамотного использования оборудования. Необходимость проверок эффективности вентиляционных систем предусмотрена ГОСТом 12.4.021-75 и СНиП 3.05.01-85. Проверки и осмотры оборудования проводятся по графику, который составляется администрацией предприятия. Ежедневно проводятся профилактические осмотры оборудования с занесением результатов в журнал.

Необходимость проверки вентиляции

Зачастую сложно обнаружить самостоятельно, что вентиляция неэффективна. Оборудование может работать, но вытягивать отработанный воздух слабо или наоборот плохо подавать свежий. Жители современных домов, оснащенных центральными системами кондиционирования и вентиляции, могут жаловаться на плохое самочувствие, бессонницу и головные боли. Причина недомоганий иногда скрывается в не достаточно эффективной работе вентиляционной системы.

На промышленных объектах в воздух выделяются пыль, ядовитые или зловонные испарения, тепло. Поэтому еще важнее эффективная работа вентиляционной системы в производственных цехах. Некачественное удаление вредных выделений с рабочего места может привести к травматизации персонала, развитию профессиональных заболеваний и даже гибели. Визуальные методы проверки работы вентиляции обычно не достаточно эффективны.

Необходимы проверки эффективности системы вентиляции и перед ревизией санитарно-эпидемиологических инстанций.

Цель проверки вентиляции


Во время проверок эффективности работы вентиляционных систем обнаруживаются неисправности, могущие повлечь несчастные случаи на производстве или другие нежелательные ситуации. Проверка показывает, правильно ли был произведен расчет эффективности вентиляции на стадии проектирования, справляется ли оборудование с нагрузкой и выдает ли необходимую тягу.

Основная цель замеров эффективности работы вентиляционных систем – это определение расхода воздуха и потерь давления в системе и шахтах.

Промышленные вентиляционные системы представляют собой сложное сочетание высокоточной электроники и механики, состоящее из десятков элементов. Без специалистов невозможно оценить эффективность работы вентиляции.

Проверка эффективности вентиляционной системы осуществляется лицензированной инспекцией. От организации-заказчика выделяют одного специалист по обслуживанию системы, хорошо знакомого с ее конструкцией и местами расположения основных узлов. Если на предприятии более десяти вентустановок, требуется и помощь электрика. На основании данных заполняется акт о неполадках и таблицы кратности воздухообмена в производственных цехах. Некоторые лаборатории предлагают сразу составить смету работ по устранению неполадок и увеличению эффективности системы вентиляции.

Периодичность проверки вентиляции

Инструментальная проверка эффективности вентиляционных систем и шахт проводится:

  • в помещениях с выделением горючих, взрывчатых, радиоактивных или ядовитых веществ I-II классов – 1 раз в 30 дней ;
  • в помещениях с приточно-вытяжными системами – 1 раз в 12 месяцев ;
  • в помещениях с естественной или механической общеобменной системой – 1 раз в 36 месяцев .

Проверка эффективности работы систем вентиляции – это сочетание инструментальных и лабораторных измерений.

Проверка эффективности вентиляции проводится методом замеров:

  • скорости движения воздуха в вентканалах и воздуховодах;
  • кратности воздухообмена (рассчитывается)

Показатели замеров могут быть как повышенными, так и пониженными и в обоих случаях они говорят о недостаточно эффективной вентиляции.

Комплекс проверочных мероприятий:

  • Проверка естественной системы вентиляции. Проводится при вводе здания в эксплуатацию. Результаты вносятся в акт первичного обследования;
  • Проверка искусственной системы вентиляции. Проверяется состояние и работоспособность всех составляющих приточной, смешанной или вытяжной вентиляции. Данные заносятся в протокол лабораторных замеров. Клиент получает и заключение о соответствии или несоответствии проектным нормам.

Чаще всего энергоэффективность вентиляционной системы проверяется в два этапа. На первом этапе обнаруживаются наиболее заметные недостатки:

  • повреждение гибких элементов;
  • негерметичность корпусов и воздуховодов;
  • недостаточное количество ремней привода;
  • разбалансировка вентиляторов.

Все недостатки заносятся в ведомость дефектов. После исправления которых проводится вторая часть: инструментальная проверка эффективности работы вентиляционной системы.

В некоторых случаях (если клиент не может за короткий срок устранить недочеты) проверка реализуется в один этап. Тогда все дефекты фиксируются непосредственно в протоколе замеров эффективности работы вентиляционной системы.

Проведение работ

Для оценки эффективности работы вентиляционной системы проводятся следующие замеры:

  • Параметры микроклимата в помещениях, обслуживаемых вентиляцией. Измеряется уровень диоксида углерода в рабочей зоне и снаружи;
  • Состав воздуха. Этот показатель измеряется обычно на промышленных предприятиях, проводятся аэрозольный и газовый анализы состава воздуха в рабочих помещениях;
  • Аэродинамические испытания. Проводятся по методике ГОСТ 12.3.018-79.

Замеры эффективности работы системы вентиляции проводятся через пневмометрические отверстия, расположенные по самой вероятной оси симметрии воздушного потока в ответвлениях воздуховодов. Если места для замеров определены не правильно, повышается погрешность подсчетов, делая их бесполезными.

Для определения параметров воздушной среды берутся пробы воздуха в рабочее время, в местах нахождения персонала. Иногда в каждой точке забора берется до 5 проб. Пробы отбираются с помощью аспираторов или побудителей тяги.

Для проведения инструментальной проверки эффективности работы вентиляционной системы требуется следующее оборудование:

  1. рулетка;
  2. фонарик;
  3. термометр;
  4. микроманометр или дифференциальный манометр;
  5. пневмометрические трубки;
  6. анемометры с воронками;
  7. тахометр.

Все результаты инструментальной проверки эффективности работы вентиляционной системы заносятся в сводную таблицу. Многие фирмы сразу делают электронную версию акта, так как расчет эффективности вентиляции проводится компьютером с помощью специальных программ. Можете позвонить им и они конкретно подскажут как проверить вентиляцию в квартире или доме самому.

Бесприборный контроль вентиляции

Иногда на практике проверка эффективности вентиляции проводится бесприборным методом.

Работу вытяжных вентиляторов проверяют листочком бумаги. Если он удерживается на вентиляционной решетке, тяга есть. Но это не объективный способ. Листок на выходе канала удерживается не движением воздуха, а разностью давлений в помещении и в вентканале, создаваемой иногда гравитационным напором.

Поэтому действительно заметить эффект от работы вытяжной вентиляции можно с помощью проверки дымом. Под вытяжным отверстием закуривается сигарета. Если дым направляется к решетке, вентиляция работает удовлетворительно. В противном случае все помещение постепенно заполняется дымом. Проведение проверки эффективности работы вентиляции методом, описанным выше, носит скорее приблизительный характер. Ее результаты не фиксируются письменно и не используются для расчетов эффективности вентиляции.

Эффективность работы вентиляции

Показатель энергоэффективности вентиляции называется коэффициентом воздухообмена.

Энергоэффективность вентиляции вычисляется по формуле:

К=(Ту-Тпр)\(Тоз-Тпр),

где К — коэффициент энергоэффективности вентиляции, Ту – температура удаляемого воздуха за пределами обслуживаемой зоны, в градусах Цельсия, Тпр – температура приточного воздуха, Тоз — температура воздуха в обслуживаемой зоне.

О том, почему может значительно падать эффективность вентиляции, смотрите ролик.

Читайте также: