Структурные уровни организации материи на микроуровне. Структурные уровни организации материи. Структура и её роль в организации материи. Системный подход к строению материи

В настоящее время принято единую Природу для удобства делить на три структурных уровня – микро-, макро- и мегамир. Естест­венными, хотя отчасти и субъективными, признаками деления явля­ются размеры и массы исследуемых объектов.

Микромир – мир предельно малых, непосредственно не наблюдаемых микросистем с характерным размером от 10 –8 см и менее (атомы, атомные ядра, элементарные частицы).

Макромир – мир макротел, начиная от макромолекул (размеры от 10 –6 см и выше) до объектов, размерность которых соотносима с масштабами непосредственного человеческого опыта – миллиметры, сантиметры, километры, вплоть до размеров Земли (длина экватора Земли равна ~ 10 9 см).

Мегамир – мир объектов космического масштаба от 10 9 см до 10 28 см. Этот диапазон включает размеры Земли, Солнечной системы, Галактики, Метагалактики.

Хотя микро–, макро– и мегамир тесно взаимосвязаны и состав­ляют единое целое, тем не менее на каждом из этих структурных уровней действуют свои специфические законы: в микромире – законы квантовой физики, в макромире – законы классического естествознания, прежде всего классической физики: механики, термодинамики, электродинамики. Законы мегамира основаны в первую очередь на общей теории относительности.


Микромир

Атомная физика .Еще древние греки Левкипп и Демокрит выдвинули гениальную догадку, что вещество состоит из мельчайших частиц – атомов.

Научные основы атомно-молекулярного учения были заложены гораздо позднее в работах русского ученого М.В. Ломоносова, французских химиков Л. Лавуазье и Ж. Пруста , английского химика Дж. Дальтона , итальянского физика А. Авогадро и других исследователей.

Периодический закон Д.И. Менделеева показал существование закономерной связи между всеми химическими элементами. Стало ясно, что в основе всех атомов лежит нечто общее. До конца XIX в. в химии царило убеждение, что атом есть наименьшая неделимая частица простого вещества. Считалось, что при всех химических превращениях разрушаются и создаются только молекулы, атомы же остаются неизменными и не могут дробиться на части. И, наконец, в конце XIX в. были сделаны открытия, показавшие сложность строения атома и возможность превращения одних атомов в другие.

Первыми на сложную структуру атома указали немецкие ученые Г.Р. Кирхгоф и Р.В. Бунзен , изучая спектры испускания и поглощения различных веществ. Сложную структуру атома подтверждали также опыты по изучению ионизации, открытие и исследование так называемых катодных лучей и явления радиоактивности.

Г.Р. Кирхгоф и Р.В. Бунзен обнаружили, что каждому химическому элементу соответствует характерный, присущий только ему набор спектральных линий в спектрах испускания и поглощения. Это означало, что свет испускается и поглощается отдельными атомами, а атом, в свою очередь, представляет собой сложную систему, способную взаимодействовать с электромагнитным полем.

Об этом же свидетельствовало явление ионизации атомов, обнаруженное при исследованиях электролиза и газового разряда. Данное явление можно было объяснить, лишь предположив, что атом в процессе ионизации теряет часть своих зарядов или приобретает новые.

Свидетельством сложной структуры атома явились опыты по изучению катодных лучей, возникающих при электрическом разряде в сильно разреженных газах. Для наблюдения этих лучей из стеклянной трубки, в которую впаяны два металлических электрода, выкачивается, по возможности, весь воздух, а затем сквозь нее про­пускается ток высокого напряжения. При таких условиях от катода трубки перпендикулярно к его поверхности распространяются «не­видимые» катодные лучи, вызывающие яркое зеленое свечение в том месте, куда они попадают. Катодные лучи обладают способностью приводить в движение легко подвижные тела и отклоняться от своего первоначального пути в магнитном и электрическом полях.

Изучение свойств катодных лучей привело к заключению, что они состоят из мельчайших частиц, несущих отрицательный заряд. Позже удалось определить массу и величину их заряда. Оказалось, что масса частиц и величина их заряда не зависят ни от природы газа, остающегося в трубке, ни от вещества, из которого сделаны электроды, ни от прочих условий опыта. Кроме того, катодные частицы известны только в заряженном состоянии и не могут существовать без своих зарядов, не могут быть превращены в электроней­тральные частицы: электрический заряд составляет самую сущность их природы. Эти частицы получили название электронов.

В катодных трубках электроны отделяются от катода под влиянием электрического поля. Но они могут возникать и вне всякой связи с электрическим полем. Так, например, при электронной эмиссии металлы испускают электроны, при фотоэффекте многие вещества также выбрасывают электроны. Выделение электронов самыми разнообразными веществами указывало на то, что эти частицы входят в состав всех без исключения атомов. Это позволило сделать вывод, что атомы являются сложными образованиями, построенными из более мелких составных частей.

В 1896 г., изучая люминесценцию различных веществ, А.А. Беккерель случайно обнаружил, что соли урана, излучают без предварительного их освещения. Это излучение, обладающее большой проникающей способностью и воздействующее на фотографическую пластинку, завернутую в черную бумагу, было названо радиоактивным излучением. Позднее было установлено, что оно состоит из тяжелых положительно заряженных α-частиц, легких отрицательных β-частиц (электронов) и электрически нейтрального γ-излучения.

Открытие электрона можно считать началом рождения атомной физики, обусловившим попытки построения моделей атома. Поскольку электрон имеет отрицательный заряд, а атом в целом устойчив и электронейтрален, то естественно было предположить наличие в атоме положительно заряженных частиц.

Первые модели атома на основе представлений классической механики и элек­тродинамики появились в 1904 г.: автором одной из них стал японский физик Хантаро Нагаока , другая принадлежала английскому физику Дж. Томсону – автору открытия электрона.

X. Нагаока представил строение ато­ма аналогичным строению Солнечной системы: роль Солнца играет положи­тельно заряженная центральная часть атома, вокруг которой по установленным кольцеобразным орбитам движутся «планеты» – электроны. При незначительных смещениях электроны возбуждают электромагнитные волны.

В модели атома Дж. Томсона положительное электричество «распределено» по сфере, в которую вкраплены электроны. В простейшем атоме водорода электрон находится в центре положительно заряженной сферы. В многоэлектронных атомах электроны располагаются по устойчивым конфигурациям, рассчитанным Дж. Томсоном. Томсон считал, что каждая конфигурация определяет те или иные химические свойства атомов. Он предпринял попытку теоретически объяснить периодическую систему элемен­тов Д. И. Менделеева.

Но вскоре оказалось, что новые опытные факты опровергают модель Томсона и, наоборот, свидетельствуют в пользу планетарной модели. Эти факты были установлены Э. Резерфордом в 1912 г. В первую очередь следует отметить открытие им атомного ядра. Для выявления структуры атома Резерфорд производил зондирование атома с помощью α–частиц, которые возникают при распаде радия и некоторых других радиоактивных элементов. Их масса примерно в 8000 раз больше массы электрона, а положительный заряд равен по модулю удвоенному заряду электрона.

В опытах Резерфорда пучок α–частиц падал на тонкую фольгу из исследуемого материала (золото, медь и др.). После прохождения фольги α–частицы попадали на экран, покрытый сульфидом цинка. Столкновение каждой частицы с экраном сопровождалось сцинтилляцией (вспышкой света), которую можно было наблюдать. В отсутствие фольги на экране возникал светлый кружок, состоящий из сцинтилляций, вызванных пучком частиц. Но когда на пути пучка помещали фольгу, то вопреки ожиданиям α–частицы испытывали очень малое рассеяние на атомах фольги и распределялись на экране внутри круга чуть большей площади.

Совершенно неожиданным также оказалось, что небольшое число α–частиц (примерно одна из двадцати тысяч) отклонялись на углы больше 90°, т.е. практически возвращались назад. Резерфорд понял, что положительно заряженная α–частица могла быть отброшена на­зад лишь в том случае, если в атомах мишени положительный заряд атома и его масса сконцентрированы в очень малой области пространства. Так Резерфорд пришел к идее атомного ядра – тела малых размеров, в котором сконцентрированы почти вся масса и весь положительный заряд атома.

Подсчитывая число α–частиц, рассеянных на большие углы, Резерфорд смог оценить размеры ядра. Оказалось, что ядро имеет диаметр порядка

10 –12 –10 –13 см (у разных ядер). Размер же самого атома составляет примерно 10 –8 см, т.е. в 10 – 100 тысяч раз превышает размеры ядра. Впоследствии удалось точно определить и заряд ядра. Если принять заряд электрона за единицу, то заряд ядра оказался в точности равен номеру данного химического элемента в периодической системе элементов Д.И. Менделеева.

Из опытов Резерфорда непосредственно вытекала планетарная модель атома с положительно заряженным атомным ядром. Учитывая, что в целом атом должен быть электронейтральным, следовало заключить, что число внутриатомных электронов, как и заряд ядра, равно порядковому номеру элемента в периодической системе. Очевидно также, что находиться в покое электроны внутри атома не могут, так как они вследствие притяжения положительным ядром упали бы на него. Следовательно, они должны двигаться вокруг ядра подобно планетам вокруг Солнца. Такой характер движения электронов определяется действием электрических кулоновских сил со стороны ядра.

В атоме водорода вокруг ядра обращается всего лишь один электрон. Ядро атома водорода имеет положительный заряд, равный по модулю заряду электрона, и массу примерно в 1836 раз большую массы электрона. Это ядро было названо Резерфордом протоном и стало рассматриваться как элементарная частица.

Размер атома определяется радиусом орбиты движения его электронов. Достаточно наглядная планетарная модель атома, как уже говорилось, является прямым следствием экспериментальных результатов Резерфорда по рассеянию α-частиц на атомах вещества.

Однако вскоре выяснилось, что такая простая модель противоречит законам электродинамики, из которых следует, что модель атома Резерфорда является неустойчивой системой и длительное время атом указанной конструкции существовать не может. Дело в том, что движение электронов по круговым орбитам происходит с ускорением, а ускоренно движущийся заряд, согласно законам электродинамики Максвелла, должен излучать электромагнитные волны (ω – частотой, равной частоте его обращения вокруг ядра). Излучение сопровождается потерей энергии. Теряя энергию, электроны должны приближаться к ядру, подобно тому, как спутник приближается к Земле при торможении в верхних слоях атмосферы.

В действительности, однако, этого не происходит. Атомы устойчивы, могут существовать неограниченно долго, совершенно не из­лучая электромагнитные волны.

Выход из создавшегося положения нашел датский ученый Н.Бор. Он сделал радикальный вывод о том, что законы классической механики и электродинамики вообще не применимы в микромире и, в частности, в атоме. Тем не менее, чтобы сохранить планетарную модель атома Резерфорда, он сформулировал два постулата (постулаты Бора), идущие вразрез и с классической механикой, и с классической электродинамикой. Эти постулаты заложили основы принципиально новых теорий микромира – квантовой механики и квантовой электродинамики (квантовой теории электромагнитного поля). Обосновывая свои постулаты, Бор опирался на идею существования квантов электромагнитного поля, выдвинутую в 1900 г. М. Планком и развитую затем А. Эйнштейном (для объяснения фотоэффекта).

Постулаты Бора заключаются в следующем: электрон может двигаться вокруг ядра не по любым орбитам, а только по таким, ко­торые удовлетворяют определенными условиям, вытекающим из теории квантов. Эти орбиты получили название устойчивых, или квантовых, орбит. Когда электрон движется по одной из возможных для него устойчивых орбит, то он не излучает. Переход электрона с удаленной орбиты на более близкую орбиту сопровождается потерей энергии.

Потерянная атомом при каждом переходе энергия превращается в один квант лучистой энергии. Частота излучаемого при этом света определяется радиусами тех двух орбит, между которыми совершается переход электрона. Чем больше расстояние от орбиты, на которой находится электрон, до орбиты, на которую он переходит, тем больше частота излучения.

Простейшим из атомов является атом водорода: вокруг ядра вращается только один электрон. Исходя из приведенных постулатов Бор рассчитал радиусы возможных орбит для этого электрона и нашел, что они относятся, как квадраты натуральных чисел: 1:2: : 3: ... : п. Величина п получила название главного квантового числа. Радиус ближайшей к ядру орбиты в атоме водорода равняется 0,53 ангстрема. Вычисленные отсюда частоты излучений, сопровождающих переходы электрона с одной орбиты на другую, оказались точности совпадающими с частотами, найденными опытным путем для линий водородного спектра. Тем самым была доказана правильность расчета устойчивых (стационарных) орбит для атома водорода, вместе с тем и приложимость постулатов Бора для таких расчетов.

В дальнейшем теория Бора была распространена и на атомную структуру других элементов. Однако распространение теории на многоэлектронные атомы и молекулы столкнулось с трудностями. Чем подробнее теоретики пытались описать движение электронов в многоэлектронном атоме, определить их орбиты, тем большими были расхождения результатов с экспериментальными данными. В ходе развития квантовой теории стало ясно, что эти расхождения носят принципиальный характер и связаны с так называемыми волновыми свойствами электрона.

Дело в том, что в 1924 г. Луи де Бройль распространил известный к тому времени корпускулярно-волновой дуализм электромагнитного поля на вещественные частицы микромира (атомы, электроны, протоны и т.д.). Напомним, что согласно его идее частицы, имеющие массу, заряд и т.д., также обладают и волновыми свойствами. При этом длина волны де Бройля (λ) связана с импульсом частиц р и равна

λ = h/р, где h – постоянная Планка.

Идея де Бройля нашла блестящее подтверждение в опытах К. Дэвиссона и Л. Джермера (1927), в которых наблюдалось явление дифракции электронов классический пример волнового явления.

Развивая волновые идеи частиц микромира, Э. Шрёдингер создал математическую волновую модель атома в виде знаменитого сейчас волнового дифференциального уравнения Шрёдингера:

Анализ волнового уравнения Шрёдингера показал, что с его помощью можно определить все возможные дискретные энергии Е п в атоме. Кроме того, было выяснено, что волновая функция не позволяет абсолютно точно определить положение электронов в атомах, они расплываются в некое «облако»; таким образом, можно говорить лишь о вероятности нахождения электронов в том или ином месте атома, которая характеризуется квадратом амплитуды волны.

Учитывая законы квантовой волновой механики, становится ясно, почему оказалось невозможным точно описать структуру атома на основе представлений о боровских орбитах электронов в атоме. Таких, точно локализованных орбит в атомах просто не существует, а хорошее согласование расчета орбит электронов в атоме водорода, в соответствии с теорией Бора и экспериментальными данными связано с тем, что только для атома водорода электронные орбиты Бора хорошо совпали с кривыми средней плотности зарядов, вычисленных в соответствии с квантовой теорией Шрёдингера. Для многоэлек­тронных атомов такого совпадения не наблюдается.

В настоящее время на основе квантовой механики, а также квантовой электродинамики – квантовой теории электромагнитного поля, разработанной в 1927 г. П.А. Дираком , удалось объяснить многие особенности поведения многоэлектронных атомно-молекулярных систем. В частности, удалось разрешить важнейший вопрос о структуре атомов различных элементов и установить зависимость свойств элементов от строения электронных оболочек им атомов. В настоящее время разработаны схемы строения атомов всех химических элементов, которые позволяют объяснить многие физические и химические свойства элементов.

Напомним, что число электронов, вращающихся вокруг ядра атома, соответствует порядковому номеру элемента в периодической системе Д.И. Менделеева. Электроны расположены послойно. Каждому слою принадлежит определенное заполняющее или как бы насыщающее его число электронов. Электроны одного и того же слоя характеризуются близкими значениями энергии, т.е. находятся примерно на одинаковом энергетическом уровне. Вся оболочка атома распадается на несколько энергетических уровней (n ). Электроны каждого последующего слоя находятся на более высоком энергетическом уровне, чем электроны предыдущего слоя. Максимальное число электронов (N ), могущих находиться на данном энергетическом уровне (n), определяется по формуле N = 2n 2 , т.е. на первом уровне (n=1) может находиться два электрона, на втором (п = 2) – восемь электронов, на третьем (n= 3) – восемнадцать.

Электроны наружного слоя, как наиболее удаленные от ядра и, следовательно, наименее прочно связанные с ядром, могут отрываться от атома и присоединяться к другим атомам, входя в состав наружного слоя последних. Атомы, лишившиеся одного или нескольких электронов, становятся заряженными положительно, так как заряд ядра атома превышает сумму зарядов оставшихся электронов. Наоборот, атомы, присоединившие электроны, становятся заряженными отрицательно. Образующиеся заряженные частицы называются ионами. Многие ионы, в свою очередь, могут терять или присоединять электроны, превращаясь при этом в электронейтральные атомы или новые ионы с иным зарядом.

Подводя итог рассмотрению основных результатов квантово-механических подходов к строению и структуре атомов, отметим следующее. Состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами – n, l, т, s:

1) n главное квантовое число, характеризует энергию электрона на соответствующей орбите (n );

2) l орбитальное квантовое число, характеризует форму орбиты (электронного облака) и может изменяться в атоме от 0 до n = 1;

3) т магнитное квантовое число, характеризует ориентацию орбит(электронных облаков) в пространстве и может принимать значения от +1 до –1;

4) s спиновое квантовое число, характеризует вращение электрона вокруг собственной оси и может принимать только два значения: s = ±1/2.

Согласно одному из важнейших принципов квантовой механи­ки – принципу Паули, в атоме не может быть электронов, у кото­рых все четыре квантовых числа одинаковы. В рамках квантовой механики получили полное объяснение, как структура атомов, так и изменение свойств химических элементов в периодической системе Д.И. Менделеева.

Плодотворным оказалось также применение квантовой механики к физическим полям. Была построена квантовая теория электромагнитного поля – квантовая электродинамика, вскрывшая целый ряд фундаментальных законов микромира. Среди них важнейшие законы взаимного превращения двух видов материальных субстанций – вещественной и полевой материи – друг в друга.

Свое место в ряду элементарных частиц занял фотон – частица электромагнитного поля, не имеющая массы покоя. Синтез квантовой механики и специальной теории относительности привел к предсказанию существования античастиц . Оказалось, что у каждой частицы должен быть как бы свой «двойник» другая частица с той же массой, но противоположным электрическим или каким-либо другим зарядом. Английский физик П.А. Дирак основатель релятивистской к пантовой теории поля предсказал существование позитрона и возможность превращения фотона в пару электрон-позитрон и обратно. Позитрон – античастица электрона – экспериментально был открыт и 1934 г. К.Д. Андерсоном в космических лучах.

Ядерная физика .По современным представлениям, атомные ядра элементов состоят из протонов и нейтронов. Первые указания на то, что и состав ядер входят протоны (ядра атомов водорода) были получены Резерфордом в 1919 г. в результате его нового (после открытия строения атома) сенсационного открытия – расщепления атомного ядра под действием α-частиц и получения новых химических элементов в результате первой искусственной ядерной реакции.

В одном из вариантов своих опытов с использованием камеры Вильсона, наполненной азотом, внутри которой имелся радиоактивный источник излучения, Резерфордом были получены фотографии треков α-частиц, на конце которых имелось характерное разветвление – «вилка». Одна из сторон «вилки» давала короткий трек, а другая – длинный. Длинный трек имел такие же особенности, как и треки, наблюдаемые ранее Резерфордом при бомбардировке α-частицами атомов водорода

Так впервые была высказана мысль, что ядра водорода представляют собой составную часть ядер других атомов. Впоследствии Резерфорд для этой составной части ядра предложил термин «протон».

Схема реакции Резерфорда может быть представлена следующим образом: α–частица попадает в атомное ядро азота и поглощается им. Образующееся при этом промежуточное ядро изотопа фтора оказывается неустойчивым: оно выбрасывает из себя один протон, превращаясь в ядро изотопа кислорода .

В 1932 г. Д.Д. Иваненко опубликовал заметку, в которой высказал предположение, что наряду с протоном структурным элементом ядра также является нейтрон. В 1933 г. он обосновал протон-нейтронную модель ядра и сформулировал основной тезис, заключающийся в том, что в ядре имеются только тяжелые частицы – протоны и нейтроны. При этом обе частицы могут превращаться друг в друга. В дальнейшем протон и нейтрон стали рассматривать как два состояния одной частицы – нуклона .

А в том же 1933 г. Дж. Чедвик экспериментально доказал существование нейтронов в атомных ядрах. Он облучал α–частицами бериллиевую пластинку и исследовал реакцию превращения бериллия (Be) в углерод (С) с испусканием нейтрона n).

Нейтроны, вылетающие из бериллия, направлялись в камеру Вильсона, наполненную азотом (N), и при попадании нейтрона в и протон атома азота образовывалось ядро бора (В) и α–частицы.

Сам нейтрон не дает трека в камере Вильсона, но по трекам ядра бора и α–частицы можно рассчитать, что данная реакция вызвана нейтральной частицей массой в одну атомную единицу массы, т.е. нейтроном. Отметим, что свободный нейтрон существует недолго, он радиоактивен, период его полураспада составляет около 8 мин, после чего он превращается в протон, испуская β–частицу (электрон) и нейтрино. После открытия нейтрона протон-нейтронная модель строения атомных ядер Д.Д. Иваненко стала общепризнанной.

Все ядерные реакции сопровождаются испусканием тех или иных элементарных частиц. Продукты ядерных реакций оказываются радиоактивными, их называют искусственно радиоактивными изотопами. Явление искусственной радиоактивности было открыто в 1934 г. известными французскими физиками Фредериком и Ирен Жолио-Кюри.

Как и естественно радиоактивные вещества, искусственно полученные радиоактивные изотопы испускают известные α, β, и γ–излучения. Но кроме перечисленных излучений Фредерик и Ирен Жолио-Кюри открыли новый вид радиоактивности – испускание положительных электронов-позитронов.

Впервые это удалось установить с помощью камеры Вильсона при бомбардировке α–частицами некоторых легких элементов (бериллия, бора, алюминия), в результате чего был искусственно создан целый ряд новых радиоактивных изотопов, не наблюдаемых ранее в природе. Примером образования позитронного радиоактивного изотопа может служить реакция бомбардировки алюминия α–частицами. И данном случае ядро алюминия испускает нейтрон и превращается в ядро радиоактивного изотопа фосфора , который в свою очередь, испуская позитрон β + , превращается в стабильный изотоп кремния .

В промышленном масштабе искусственные радиоактивные изотопы обычно получают облучением (главным образом нейтронным) соответствующих химических элементов в ядерных реакторах.

После того, как было установлено, что ядра атомов состоят и протонов и нейтронов, теория атомного ядра получила дальнейшее развитие в направлении изучения взаимодействий частиц внутри ядра, а также структуры атомных ядер различных элементов.

Ниже приведены основные сведения о свойствах и строении ядер.

1. Ядром называется центральная часть атома, в которой сосредоточена практически вся масса атома и его положительный электрический заряд. Все атомные ядра состоят из протонов и нейтронов, которые считаются двумя зарядовыми состояниями одной частицы – нуклона.

Протон имеет положительный электрический заряд, равный по абсолютной величине заряду электрона е =1,6 –19 Кл и массу покоя т р ~ 1,6726 10 – 27 кг.

Нейтрон не имеет электрического заряда, его масса немног больше массы протона – т п = 1,6749 10 –27 кг.

Массу ядер элементарных частиц обычно выражают в атомных единицах массы (а.е.м.). За атомную единицу массы принята 1/12массы изотопа углерода : 1 а.е.м. = 1,66 10 –27 кг. Следовательно, т р = 1,00728 а.е.м., а т п = 1,00866 а.е.м.

2. Зарядом ядра называется величина Ze, где е –величина заряда протона; Z – порядковый номер химического элемента в периодической системе Менделеева, равный числу протонов в ядре.

В настоящее время известны ядра с порядковым номером Z = 1 до Z = 114. Для легких ядер отношение числа нейтронов (N) к числу протонов (Z) близко или равно единице. Для ядер химических элементов, расположенных в конце периодической системы, отношение N/Z = 1,6.

3. Общее число нуклонов в ядре А = N + Z называется массовым числом. Нуклонам (протону и нейтрону) приписывается массовое число, равное единице. Ядра с одинаковыми Z, но различными А называются изотопами. Ядра, которые при одинаковом А имеют различные Z, называются изобарами. Ядра химических элементов принято обозначать символом .X, А, Z где X – символ химического элемента; А – массовое число; Z – атомный номер.

Всего известно около 300 устойчивых изотопов химических элементов и более 2000 естественных и искусственно полученных paдиоактивных изотопов.

Все изотопы одного химического элемента имеют одинаковое строение электронных оболочек. Поэтому у изотопов данного элемента одинаковы все химические свойства. В настоящее время установлено, что большинство химических элементов, встречающих в природе, представляет собой смесь изотопов. Поэтому указанные в таблице Менделеева атомные массы элементов часто значительно отличаются от целых чисел.

4. Размер ядра характеризуется радиусом ядра, имеющим условный смысл ввиду размытости границ ядра. Эмпирическая формула для радиуса ядра R = R А, где R= (1,3/1,7)10 –15 м, может быть истолкована как пропорциональность объема ядра числу нуклонов в нем.

5. Ядерные частицы имеют собственные магнитные моменты, которыми определяется магнитный момент ядра (Р тт) в целом. Единицей измерения магнитных моментов ядер служит ядерный магнетон μ яд = eh,/2т р, где е – абсолютная величина заряда электрона; h – постоянная Планка; т р – масса протона. Ядерный магнетон μ яд в 1836,5 раза меньше магнитного момента электрона в атоме, откуда следует, что магнитные свойства атомов определяются магнитными свойствами его электронов.

6. Распределение электрического заряда протонов по ядру в общем случае несимметрично. Мерой отклонения этого распределения сферически симметричного является квадруполъный электрический момент ядра Q. Если плотность ядра считать везде одинаковой, то Q определяется только формой ядра.

Нуклоны, составляющие ядро, связаны между собой особыми силами притяжения – ядерными силами. Устойчивость атомных ядер большинства элементов свидетельствует о том, что ядерные силы исключительно велики: они должны превышать значительные кулоновские силы отталкивания, действующие между протонами, расположенными на расстояниях порядка 10 –13 см (порядок размеров ядра). Ядерные силы – силы особого рода, связанные с существованием внутри ядра особого вида материи – ядерного поля.

В настоящие время принята мезонная теория ядерных сил, согласно которой нуклоны взаимодействуют друг с другом путем обмена особыми элементарными частицами – π–мезонами – квантами ядерного поля.

Наличие обменных частиц в ядре – мезонов – вначале было предсказано теоретически японским ученым Хидоки Юкавой в 1936 г., а затем открыто в космических лучах в 1947 г.

Общая характеристика ядерных сил сводится к следующему.

1. Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами ядра порядка 10 – 15 м. Длина (1,5 ÷2,2) –10 – 15 м называется радиусом действия ядерных сил.

2. Ядерные силы обнаруживают зарядовую независимость: притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов – протонного или нуклонного. Зарядовая независимость ядерных сил видна из сравнения энергий в зеркальных ядрах (так называются ядра, в которых общее число нуклонов одинаково, но число протонов в одном равно числу нейтронов в другом).

3. Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел А. Практически полное насыщение ядерных сил достигается у α–частицы, которая является очень устойчивым образованием.

Нуклоны прочно связаны в ядре ядерными силами. Для разрыва этой связи, т.е. для полного разобщения нуклонов, нужно совершить значительную работу. Энергия, необходимая для разобщения нуклонов, составляющих ядро, называется энергией связи ядра. Величину энергии связи можно определить на основе закона сохранения энергии и закона пропорциональности массы и энергии в соответствии с формулой Эйнштейна Е = тс 2 .

Согласно закону сохранения энергии, энергия нуклонов, связанных в ядре, должна быть меньше энергии разобщенных нуклонов на величину энергии связи ε 0 . С другой стороны, согласно закону пропорциональности массы и энергии, изменение энергии системы ΔW должно сопровождаться пропорциональным изменением массы системы на Δm, т.е. ΔW = Δmc 2 , где с – скорость света в вакууме.

Так как в данном случае ΔW есть энергия связи ядра, то масса атомного ядра должна быть меньше суммы масс нуклонов, составляющих ядро, на величину Δm , которая называется дефектом массы ядра. Из соотношения ΔW = Δmc 2 можно рассчитать энергию связи ядра, если известен дефект массы этого ядра Δm.

В качестве примера рассчитаем энергию связи ядра атома гелия. Оно состоит из двух протонов и двух нейтронов. Масса протона т р = 1,0073 а.е.м., масса нейтрона – т п = 1,0087 а.е.м. Следовательно, масса нуклонов, образующих ядро, равна 2т р + 2 т п = 4,0320 а.е.м. Масса же ядра атома гелия т я = 4,0016 а.е.м. Таким образом, дефект масс атомного ядра гелия равен Δm = 4,0320 – 4,0016 = 0,03 а.е.м., или Δm = 0,03 1,66 10~ 27 = 5 10~ 29 кг. Тогда энергия связи ядра гелия

ΔW = Δmc 2 =510-29 9-10 16 Дж=28 МэВ.

Общая формула для расчета энергии связи любого ядра (в джоулях) будет иметь вид:

ΔW = c 2 {- т я },

где Z– атомный номер; А - массовое число.

Энергия связи ядра, приходящаяся на один нуклон, называется удельной энергией связи (ε). Следовательно, ε=ΔW/А (удельная энергия связи) характеризует устойчивость атомных ядер. Чем больше s, тем устойчивее ядро.

На рис. 1 представлены результаты расчетов удельных энергий связи для разных атомов (в зависимости от массовых чисел А).

Из графика на рис. 2.2 следует, что удельная энергия связи максимальна (8,65 МэВ) у ядер с массовыми числами порядка 100. У тяжелых и легких ядер она несколько меньше (например, 7,5 МэВ у урана и 7 МэВ у гелия), у атомного ядра водорода удельная энергия связи равна нулю, что вполне понятно, потому что в этом ядре нечего разобщать: оно состоит только из одного нуклона (протона).

а.е.м.

Рис. 1. Зависимость удельных энергий связи от массовых чисел

Всякая ядерная реакция сопровождается выделением или поглощением энергии. При делении тяжелых ядер с массовыми числами А порядка 100 (и более) ядерная энергия выделяется.

Выделение ядерной энергии происходит и при ядерных реакционного типа – при объединении (синтезе) нескольких легких ядер в одно ядро. Таким образом, выделение ядерной энергии происходит как при реакциях деления тяжелых ядер, так и при реакциях синтеза легких ядер. Количество ядерной энергии Δ ε, выделяемое каждым прореагировавшим ядром, равно разности между энергией связи ε продукта реакции и энергией связи исходного ядерного материала.

Соотношение ∆E∆t>ħ/2 означает, что преобразование энергии с точностью ∆Е должно занять интервал времени равный, по меньшей мере, ∆t~ ħ/∆E . Это соотношение ответственно за есте­ственную ширину спектральных линий атомов и ионов. Время жизни возбужденного состояния атомов имеет порядок t ~10 -8 ÷10 -9 с. Следовательно, неопределенность энергии таких состояний составляет ∆E~ ħ/t, чему соответствует естественная ширина спектральных линий. Если неопределенность энергии ∆Е ~ ħ/∆t соответствует энергии некоторой частицы (mс 2 , hv ), to эта частица, возникнув из «ничего», может находиться в виртуальном состоянии время ∆t без нарушения закона сохранения энергии. В современной квантовой теории поля взаимодействие частиц и их взаимные превращения рассматриваются как рождение или поглощение каждой реальной частицей виртуальных частиц. Любая частица непрерывно испускает или поглощает виртуальные частицы разных типов. Так, например, электромагнитное взаимодействие – результат обмена виртуальными фотонами, гравитационное – гравитонами. Поле ядерных сил обусловлено виртуальными π мезонами. Слабое взаимодействие создают векторные бозоны (открытые в 1983 году в ЦЕРНе, Швейцария-Франция). А переносчиком сильного взаимодействия являются глюоны (от английского слова, означающего «клей»). Соотношение неопределенностей ограничивает применимость классической механики к микрообъектам. Оно вызвало многочисленные философские дискуссии. Координаты частицы и ее импульс, изменение энергии и время, в течение которого произошло это изменение, называются взаимно дополнительными величинами. Получение экспериментальной информации об одних физических величинах, описывающих микрочастицу, неизбежно связано с потерей информации о других величинах, дополнительных к первым. Это утверждение, впервые сформулированное датским физиком Н. Бором, называется принципом дополнительности. Бор объяснял принцип дополнительности влиянием измерительного прибора, который всегда является макроскопическим прибором, на состояние микрообъекта. Однако с позиций современной квантовой теории, состояния, в которых взаимно дополнительные величины имели бы одновременно точно определенные значения, принципиально невозможны. Принцип дополнительности отражает объективные свойства квантовых систем, не связанные с существованием наблюдателя, а роль измерительного прибора заключается в «приготовлении» некоторого состояния системы. Любая новая теория, претендующая на более глубокое описание физической реальности и на более широкую область применения, чем старая, должна включать предыдущую как предельный случай. Так релятивистская механика (специальная теория относительности) в пределе малых скоростей переходит в ньютоновскую. В квантовой механике принцип соответствия требует совпадения ее физических следствий в предельном случае с результатами классической теории. В принципе соответствия проявляется тот факт, что квантовые эффекты существенны лишь при рассмотрении микрообъектов, когда величины размерности действия сравнимы с постоянной Планка. С формальной точки зрения принцип соответствия означает, что в пределе ħ → 0 квантовомеханическое описание физических объектов должно быть эквивалентно классическому. Значение принципа соответствия выходит за рамки квантовой механики он войдет составной частью в любую новую теоретическую схему. В современной физике термин «элементарные частицы» обычно употребляется не в своем точном значении, а менее строго – для наименования большой группы мельчайших частиц материи, которые не являются атомами или атомными ядрами (исключение составляет протон). Наиболее важное свойство всех элементарных частиц – способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с другими частицами. Сейчас общее число известных науке элементарных частиц (вместе с античастицами) приближается к 400. Некоторые из них стабильны и существуют в природе в свободном или слабосвязанном состоянии. Это – электроны, протоны, нейтроны, фотоны и различного сорта нейтрино.

Все остальные элементарные частицы крайне нестабильны и образуются во вторичных космических лучах или получаются в лаборатории.Основной способ их генерации – столкновения быстрых стабильных частиц, в процессе которых часть начальной кинетической энергии превращается в энергию покоя образующихся частиц (как правило, не совпадающих со сталкивающимися).

Общими характеристиками всех элементарных частиц являются масса m, время жизниt , спин J и электрический заряд Q.

В зависимости от времени жизни элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными в пределах точности современных измерений являются электрон (t > 5 10 21 лет), протон (t > 5 10 31 лет), фотон и нейтрино. К квазистабильным относятся частицы, распадающиеся за счет электромагнитного и слабого взаимодействий, их времена жизни t > 5 10 -20 с. Пример квазистабильной частицы – нейтрон.

Он распадается из-за слабого взаимодействия, среднее время жизни – 15,3 мин: .

Резонансами называют элементарные частицы, распадающиеся за счет сильного взаимодействия; их характерные времена жизни t~ 10 -22 - 10 -24 с.

Электрические заряды элементарных частиц являются целыми кратными величины е ≈1,6-10 -19 Кл, называемой элементарным электрическим зарядом (зарядом электрона). У известных элементар­ных частиц Q= 0, ±1, ±2.

Спин элементарных частиц является целым или полуцелым кратным постоянной Планка ħ.

Частицы с полуцелым спином называются фермионами. К фермионам относятся лептоны (например, электрон и нейтрино) и барионы, состоящие из кварков (например, протон и нейтрон). Системы фермионов описываются квантовой статистикой Ферми-Дирака. Фермионы подчиняются принципу запрета Паули и в данном квантовом состоянии системы фермионов не может, находится более одной час-тицы. Фермионы образуют материальные структуры.

Частицы с целым или нулевым спином называются бозонами. К бозонам относятся частицы с нулевой массой покоя (фотон, гравитон), а также мезоны , состоящие из кварков (например π–мезоны). Системы таких частиц описываются статистикой Бозе-Эйнштейна. Бозоны не подчиняются принципу запрета Паули и для них не накладывается ограничения на число частиц, которые могут находиться в некотором квантовом состоянии. Они образуют поле взаимодействия (согласно квантовой теории поля) между фермионами.

Так, например, материальные структуры образованы электронами и нуклонами (протонами и нейтронами, образующими ядра атомов), а электромагнитное поле взаимодействия между ними образуют фотоны (точнее сказать виртуальные фотоны) (рис. 2).

Рис.2.Классификация элементарных частиц

Мезоны и барионы состоят из кварков, и поэтому имеют общее название – адроны. Все известные адроны состоят либо из пары кварк-антикварк (мезоны), либо из трех кварков (барионы). Кварки и антикварки удерживаются внутри адронов глюонным полем. Кварки различаются по «аромату» и «цвету». Каждый кварк может находиться в одном из трех цветовых состояний: «красном», «синем» и «желтом». Что касается «ароматов», то их известно 5 и предполагается наличие шестого. Ароматы кварков обозначаются буквами u, d, s, с, b, t, которые соответствуют английским словам up, down, strange, charmed, beaty и truth. Более того, каждому кварку соответствует его антикварк. Ни один кварк, ни разу не был Зарегистрирован в свободном виде, несмотря на многолетние поиски. Кварки можно наблюдать только внутри адронов.

Физика элементарных частиц базируется на понятии о фундаментальных взаимодействиях гравитационном, электромагнитном, сильном и слабом.

Электромагнитное взаимодействие обусловлено обменом фотонами, которые изучены лучше остальных бозонов. Источник фотонов – электрический заряд. Гравитационное взаимодействие связано с пока гипотетическими частицами – гравитонами . Нейтральный (Z 0) и заряженные (W + ,W –)бозоны являются переносчиками слабого взаимодействия между электронами, протонами, нейтронами и нейтрино. Переносчиками сильного взаимодействия являются глюоны . Они как бы склеивают кварки в адронах. Источники глюонов – так называемые «цветовые» заряды. Они не имеют никакого отношения к обычным цветам и названы так для удобства описания. Каждый из шести ароматов кварков существует в трех цветовых разновидностях: желтой, синей или красной (ж, с, к соответственно). Антикварки тоже несут цветовые антизаряды. Важно подчеркнуть, что три заряда и три антизаряда совершенно не зависят от ароматов кварков. Таким образом, в настоящее время полное число кварков и антикварков (с учетом трех цветов и шести ароматов достигло 36. Кроме того, имеется еще девять глюонов. Глюоны, как и кварки, не наблюдаются в свободном состоянии.

Существование кварков и глюонов приводит к появлению нового, состояния вещества, которое носит название кварк-глюонной плазмы.

Это плазма, состоящая не из электронов и ионов, как обычная плазма, а из кварков и глюонов, слабо взаимодействующих друг с другом или не взаимодействующих вообще.

Одной из главных задач микрофизики, о решении которой мечтал еще А. Эйнштейн, является создание единой теории поля, которая объединила бы все известные фундаментальные взаимодействия. Создание такой теории означало бы фундаментальный прорыв во всех областях науки.

К настоящему времени создана и признана теория, которая объединяет два фундаментальных взаимодействия – слабое и электромагнитное. Она называется единой теорией слабого и электромагнитного (электрослабого) взаимодействия и утверждает, что существуют особые частицы – переносчики взаимодействия между электронами, протонами, нейтронами, нейтрино. Эти частицы, названные бозонами W + , W – и Z°, были теоретически предсказаны в 70-х гг. прошлого века и экспериментально обнаружены в 1983 г.

Теория сильного взаимодействия именуется квантовой хромодинамикой. Данная теория, описывающая взаимодействие кварков и глюонов, построена по образу квантовой электродинамики, которая, в свою очередь, описывает электромагнитные взаимодействия, обусловленные обменом фотонами. В отличие от электрически нейтральных фотонов, глюоны являются носителями «цветовых» зарядов. Это приводит к тому, что при попытке развести их в пространстве энергия взаимодействия возрастает. В результате глюоны и кварки не существуют в свободном состоянии: они «самозапираются» внутри адронов.

Современную теорию элементарных частиц, состоящую из теорий электрослабого взаимодействия и квантовой хромодинамики, принято называть стандартной моделью . Эта сложная, но уже почти законченная феноменологическая теория – главный теоретический инструмент, с помощью которого решаются задачи микрофизики

«Великое объединение» – так называют теоретические модели, исходящие из представлений о единой природе сильного, слабого и электромагнитного взаимодействий. Оно призвано объединить все существующие частицы: фермионы, бозоны и скалярные частицы. В рамках теории «Великого объединения» хорошо объясняются многие очень важные явления, в частности такие, как наблюдаемая глюонная асимметрия Вселенной, малая ненулевая масса покоя нейтрино, квантование электрического заряда и существование решений типа магнитных монополей Дирака. По последним данным, среднее время жизни протона составляет более 1,6 10 33 лет. Доказательство нестабильности протона явилось бы открытием фундаментальной важности. Однако пока этот распад не зафиксирован. Ученые надеются, что дальнейшее развитие моделей «Великого объединения» приведет к объединению всех взаимодействий, включая и гравитационное (суперобъединение). Но это – дело будущего.

В микрофизике известна и играет важную роль некая фундаментальная длина, называемая планковской, или гравитационной, длиной – l g = 1,6 –33 см. Считается, что длины меньше планковской в природе не существует. Совместно с планковским временем t g ~ 1,6 10 –43 с они составляют пространственно-временные кванты, которые призваны лечь в основу будущей квантовой теории гравитации. По мнению академика В.Л. Гинзбурга, физический смысл длины l g заключается в том, что при меньших масштабах уже нельзя пользоваться классической релятивистской теорией гравитации и, в частности, общей теорией относительности (ОТО), построение которой было завершено Эйнштейном в 1915 г.

В настоящее время наименьший «прицельный параметр», достигнутый на современных ускорителях, составляет l f ~ 10 –17 см. Таким образом, можно заключить, что вплоть до расстояний l f ~ 10 –17 см и времен l f /c ~ 10 –27 с существующие пространственно-временные координаты справедливы. Значение l f отличается от значения l g на целых 16 порядков, поэтому вопрос о фундаментальной длине еще остается актуальным для науки.

В первой половине XX в., когда объектами изучения микрофизики были атом, а затем атомное ядро, для того чтобы понять поведение электронов в атомах, пришлось совершить подлинную революцию в науке – создать квантовую механику. Микрофизика занимала тогда в естествознании совершенно особое место. Благодаря ее успехам мы смогли разобраться в строении вещества. Микрофизика – это фундамент современной физической науки.

Макромир

От микромира к макромиру. Теория строения атома дала химии ключ к познанию сущности химических реакций и механизма образований химических соединений – более сложного молекулярного уровня организации вещественной материи по сравнению с элементной атомной формой.

Квантовая механика позволила решить очень важный вопрос о расположении электронов в атоме и установить зависимость свойств элементов от строения электронных оболочек. В настоящее время разработаны схемы строения атомов всех химических элементов. При их построении ученые исходили из общих соображений об устойчивости различных комбинаций электронов. И естественно, что путеводной нитью при этом служил периодический закон Д.И. Менделеева.

При разработке схем строения атомов элементов учитывалось следующее:

1)принималось, что число электронов в атоме равно заряду атомного ядра, т.е. порядковому номеру элемента в периодической системе;

2)вся электронная оболочка распадается на несколько слоев соответствующих определенным энергетическим уровням (n = 1, 2,3,4,...);

3)на каждом уровне п может находиться не более N электронов, где N= 2п 2 ;

4)состояние каждого электрона в атоме определяется совокупностью четырех квантовых чисел п, l , т и s.

В соответствии с принципом Паули все электроны в атоме отличаются друг от друга хотя бы одним квантовым числом. В атоме нет двух электронов, у которых все квантовые числа одинаковы, соответствии с указанными допущениями построены упрощенные схемы строения атомов для первых трех периодов таблицы Менделеева.

Несмотря на условность и простоту этих схем, они тем не менее достаточны для объяснения важнейших свойств элементов и ия соединений.

Так, например, на первом энергетическом уровне (n = 1, l =0, т = 0) могут находиться только два электрона, отличающиеся своими спиновыми квантовыми числами (s = ±1/2). Других электронов при п = 1 быть не может. Это соответствует тому, что если на первом уровне имеется один электрон, то это - атом водорода; если два электрона, то это – атом гелия. Оба элемента заполняют первый ряд таблицы Менделеева.

Второй ряд таблицы Менделеева занимают элементы, электроны которых расположены на втором энергетическом уровне (п = 2). Всего на втором энергетическом уровне может быть восемь электронов (N=2 · 2 2).

Действительно, при п = 2 могут иметь место следующие состояния электронов: если l = 0 и т = 0, то может быть два электрона с противоположными спинами; если l = 1, то т может принимать три значения = –1; 0; +1), и каждому значению т соответствует также по два электрона с разными спинами. Таким образом, всего будет восемь электронов.

Второй ряд элементов в таблице Менделеева, у которых последовательно добавляется по одному электрону на втором энергетическом уровне, - литий, бериллий, бор, углерод, азот, кислород, фтор, неон.

При главном квантовом числе п = 3 l может принимать три зна­чения (l =0; 1; 2), а каждому l соответствует несколько значений т. при l = 0 т = 0; при l ~ 1 т = –1; 0; +1; при l=2 т= –2; -1; 0; I 1; +2 (рис. 2.4).

Так как всего может быть девять значений т, а каждому состоянию т соответствует два электрона с разными значениями s = ±1/2, nо всего на третьем энергетическом уровне (п = 3) может быть 18 электронов (N = 2 · З 2).

Третий ряд в таблице Менделеева соответствует последователь­ному заполнению электронами внешнего энергетического уровня у элементов от натрия до аргона (натрий, магний, алюминий, кремний, фосфор, сера, хлор, аргон).

Энергетические уровни и возможные состояния электронов в атоме:возможные орбиты, на которых электрон в атоме движется вокруг ядра, можно изобразить в виде окружностей (А), в каждой из которых точно укладывается целое число длин световых волн, равное главному квантовому числу п. Двумерный аналог атома может быть описан двумя квантовыми числами, а реальный атом характеризуют три квантовых числа.

Следующие ряды периодической системы соответствуют более сложным правилам заполнения внешних уровней атомов электронами, поскольку при увеличении общего числа электронов, а атомах начинают проявляться коллективные взаимодействия между разными группами электронов, расположенных на разных энергетических уровнях. Это приводит к необходимости учитывать ряд более тонких эффектов.

Выяснение строения электронных оболочек атомов оказало влияние и на саму структуру периодической системы, несколько изменив существовавшее до тех пор деление элементов на периоды. В прежних таблицах каждый период начинался с инертного газа, причем водород оставался вне периодов. Но теперь стало ясно, что новый период должен начинаться с того элемента, в атоме которого впервые появляется новый электронный слой в виде одного валентного электрона (водород и щелочные металлы), и заканчиваться тем элементом, в атоме которого этот слой имеет восемь электронов, образующих очень прочную электронную структуру, свойственную инертным газам.

Теория строения атомов разрешила также вопрос о положении в периодической системе редкоземельных элементов, которые ввиду их большого сходства друг с другом нельзя было распределить по различным группам. Атомы этих элементов отличаются друг от друга строением одного из внутренних электронных слоев, в то время как число электронов в наружном слое, от которого главным образом зависят химические свойства элемента, у них одинаково. По этой причине все редкоземельные элементы (лантаноиды) помещены теперь вне общей таблицы.

Однако основное значение теории строения атомов заключалось в раскрытии физического смысла периодического закона, который, но времена Менделеева был еще неясен. Достаточно взглянуть на таблицу расположения электронов в атомах химических элементов, чтобы убедиться, что с увеличением зарядов атомных ядер постоянно повторяются одни и те же комбинации электронов в наружном слое атома. Таким образом, периодическое изменение свойств химических элементов происходит вследствие периодического возвращения к одним и тем же электронным конфигурациям.

Попытаемся установить более точно, в какой зависимости от строения электронных оболочек находятся химические свойства атомов.

Рассмотрим сначала изменение свойств в периодах. В пределах каждого периода (кроме первого) металлические свойства, наиболее резко выраженные у первого члена периода, при переходе к последующим членам постепенно ослабевают и уступают место металлоидным свойствам: в начале периода стоит типичный металл, в конце – типичный металлоид (неметалл) и за ним – инертный газ.

Закономерное изменение свойств элементов в периодах может быть объяснено следующим образом. Наиболее характерным свойством металлов с химической точки зрения является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, тогда как металлоиды, наоборот, характеризуются способностью присоединять электроны с образованием отрицательных ионов.

Для отрыва электрона от атома с превращением последнего в положительный ион нужно затратить некоторую энергию, которая называется потенциалом ионизации.

Потенциал ионизации имеет наименьшее значение у элементов, начинающих период, т.е. у водорода и щелочных металлов, и наибольшее – у элементов, заканчивающих период, т.е. у инертных газов. Величина его может служить мерой большей или меньшей «металличности» элемента: чем меньше потенциал ионизации, чем легче оторвать электрон от атома, тем сильнее должны быть выражены металлические свойства элемента.

Величина потенциала ионизации зависит от трех причин:от величины заряда ядра, радиуса атома и особого рода взаимодействия между электронами в электрическом поле ядра, вызванного их волновыми свойствами. Очевидно, что чем больше заряд ядра и чем меньше радиус атома, тем сильнее притягивается электрон к ядру тем больше потенциал ионизации.

У элементов одного и того же периода при переходе от щелочного металла к инертному газу заряд ядра постепенно возрастает, а радиус атома уменьшается. Следствием этого и является постепенное увеличение потенциала ионизации и ослабление металлических свойств. У инертных газов, хотя радиусы их атомов больше, чем радиусы атомов галогенов, стоящих в том же периоде, потенциалы ионизации больше, чем у галогенов. В этом случае сильно сказывается действие третьего из вышеупомянутых факторов – взаимодействия между электронами, вследствие чего внешняя электронная оболочка атома инертного газа имеет особую энергетическую устойчивость, и удаление из нее электрона требует значительно большей затраты энергии.

Присоединение электрона к атому металлоида, превращающее его электронную оболочку в устойчивую оболочку атома инертного газа, сопровождается выделением энергии. Величина этой энергии при расчете на 1 грамм-атом элемента служит мерой так называемого сродства к электрону. Чем больше сродство к электрону, тем легче атом присоединяет электрон. Сродство атомов металлов к электрону равно нулю, – атомы металлов не способны присоединять электроны. У атомов же металлоидов сродство к электрону тем больше, чем ближе к инертному газу стоит металлоид в периодической системе. Поэтому в пределах периода металлоидные свойства усиливаются по мере приближения к концу периода.

В повседневной жизни нам не приходится иметь дело с атомами. Окружающий нас мир построен из объектов, образованных из гигантского числа атомов в виде твердых тел, жидкостей и газов. Следовательно, нашим следующим шагом должно быть изучение того, как атомы взаимодействуют друг с другом, образуя молекулы, а затем и макроскопическое вещество. Даже человеческая индивидуальность (и вообще поведение всех живых организмов) является результатом различий в структурах гигантских молекул, несущих генетическую информацию.

Молекулы состоят из одинаковых или различных атомов, соеди­ненных между собой межатомными химическими связями. Устойчивость молекул свидетельствует о том, что химические связи обусловлены силами взаимодействия, связывающими атомы в молекулу.

Силы межатомного взаимодействия возникают между внешними электронами атомов. Потенциалы ионизации этих электронов значительно меньше, чем у электронов, находящихся на внутренних энергетических уровнях.

Нахождение конкретных формул химических соединений значительно упрощается, если воспользоваться понятием о валентности элементов, т.е. свойством его атомов присоединять к себе или замещать определенное число атомов другого элемента.

Понятие о валентности распространяется не только на отдельные атомы, но и на целые группы атомов, входящие в состав химических соединений и участвующие как одно целое в химических реакциях. Такие группы атомов получили название радикалов.

Физические основы химических связей в молекулах вещества . Однако природа сил, обусловливающих связь между атомами в молекулах, долгое время оставалась неизвестной. Только с развитием учения о строении атома появились теории, объясняющие причину различной валентности элементов и механизм образования химических соединений на основе электронных представлений. Все эти теории основываются на существовании связи между химическими и электрическими явлениями.

Остановимся, прежде всего, на отношении веществ к электрическому току.

Одни вещества являются проводниками электрического тока, как и твердом, так и в жидком состоянии: таковы, например, все металлы. Другие вещества в твердом состоянии тока не проводят, но элекропроводны в расплавленном виде. К ним принадлежит огромное большинство солей, а также многие окислы и гидраты окислов. Наконец, третью группу составляют вещества, не проводящие тока ни в твердом, ни в жидком состоянии. Сюда относятся почти все металлоиды.

Опытом установлено, что электропроводность металлов обу­словлена движением электронов, а электропроводность расплавленных солей и им подобных соединений – движением ионов, имеющих противоположные заряды. Например, при прохождении тока через расплавленную поваренную соль к катоду движутся положительно заряженные ионы натрия Na + , а к аноду – отрицательно за­ряженные ионы хлора Сl – . Очевидно, что в солях ионы существуют уже в твердом веществе, расплавление лишь создаст условия для их свободного движения. Поэтому такие соединения получили название ионных соединений. Вещества, практически не проводящие тока, не содержат ионов: они построены из электрически нейтральных молекул или атомов. Таким образом, различное отношение веществ к электрическому току является следствием различного электрического состояния частиц, образующих эти вещества.

Указанным выше типам веществ отвечают два различных ти­па химической связи:

а)ионная связь, иначе называемая электровалентной (между противоположно заряженными ионами в ионных соединениях);

б)атомная, или ковалентная, связь (между электронейтральными атомами в молекулах всех остальных веществ).

Ионная связь .Такого типа связь существует между противополож­но заряженными ионами и образуется в результате простого электро­статического притяжения ионов друг к другу.

Положительные ионы образуются путем отщепления от атомов электронов, отрицательные – путем присоединения электронов к атомам.

Так, например, положительный ион Na + образуется при отщеплении от атома натрия одного электрона. Так как в наружном слое атома натрия находится только один электрон, то естественно предположить, что именно этот электрон, как наиболее удаленный от ядра, и отщепляется от атома натрия при превращении его в ион. Подобным же образом ионы магния Mg 2+ и алюминия А1 3+ получаются в результате отщепления от атомов магния и алюминия соответственно двух и трех внешних электронов.

Напротив, отрицательные ионы серы и хлора образуются путем присоединения к этим атомам электронов. Поскольку внутренние электронные слои в атомах хлора и серы заполнены, дополнитель­ные электроны в ионах S 2 и Сl – , очевидно, должны были занять места во внешнем слое.

Сравнивая состав и строение электронных оболочек ионов Na + , Mg 2+ , А1 3+ , мы видим, что у всех этих ионов они одинаковы – такие же, как у атомов инертного газа неона (Ne).

В то же время ионы S 2 и Сl – , образующиеся в результате при­соединения электронов к атомам серы и хлора, имеют такие же элек­тронные оболочки, как и атомы аргона (Аг).

Таким образом, в рассмотренных случаях при превращении атомов в ионы электронные оболочки ионов уподобляются оболочкам атомов инертных газов, наиболее близко к ним расположенных в периодической системе.

Современная теория химической связи объяс

  • V. ОБЩИЕ РЕКОМЕНДАЦИИ СТУДЕНТАМ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
  • V. Особенности организации контроля знаний по отдельным видам учебной работы студентов

  • Тема: Структурные уровни организации материи: макромир, микромир, мегамир

    Тип: Контрольная работа | Размер: 48.38K | Скачано: 86 | Добавлен 13.10.10 в 12:35 | Рейтинг: +1 | Еще Контрольные работы

    Вуз: ВЗФЭИ

    Год и город: Уфа 2008


    ПЛАН

    1. Введение

    2. Системный подход к строению материи

    3. Взаимосвязь микро-, макро- и мегамиров

    4. Представление о классической физике, о поле и веществе, каквидах материи

    5. Корпускулярно-волновой дуализм

    6. Структура атома с точки зрения современной физики

    7. Элементарные частицы и их свойства

    8. Модели Вселенной, разработанные в современной космологии

    9. Основные этапы эволюции Вселенной с точки зрениясовременной науки

    10. Заключение

    11. Список использованной литературы

    1. ВВЕДЕНИЕ

    Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями.

    Материя (лат. Materia - вещество), «…философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от нас».

    Слово «материя» многозначно. В быту им пользуются для обозначения той или иной ткани. Современная астрономия сообщает, что видимая Вселенная насчитывает сотни тысяч звезд, звездных туманностей и других небесных тел. У всех предметов и явлений, несмотря на их разнообразие, есть общая черта: все они существуют вне сознания человека и независимо от него, т.е. являются материальными. Люди открывают все новые и новые свойства природных тел и процессов, производят бесконечное множество несуществующих в природе вещей, следовательно, материя, неисчерпаема.

    Материя и ее атрибуты несотворимы и неуничтожимы, существуют вечно и бесконечно разнообразны по форме своих проявлений. Все явления в мире обусловлены естественными материальными связями и взаимодействиями, причинными отношениями и законами природы. В этом смысле в мире нет ничего сверхъестественного и противостоящего материи. Человеческая психика и сознание тоже определяются материальными процессами в мозгу человека и являются высшей формой отражения внешнего мира.

    2. СИСТЕМНЫЙ ПОДХОД К СТРОЕНИЮ МАТЕРИИ

    Структурность и системная организация материи относятся к числу ее важнейших атрибутов, выражают упорядоченность существования материи и те конкретные формы, в которых она проявляется.

    Структура материи . Под структурой материи обычно понимают ее строение в макромире, т.е. существование в виде молекул, атомов, элементарных частиц и т.д. Это связано с тем, что человек является макроскопическим существом и для него привычными являются макроскопические масштабы, поэтому понятие структуры ассоциируется обычно с различными микрообъектами.

    Но если рассматривать материю в целом, то понятие структуры материи будет охватывать также макроскопические тела, все космические системы мегамира, причем в любых сколь угодно больших пространственно-временных масштабах. С этой точки зрения, понятие «структура» проявляется в том, что она существует в виде бесконечного многообразия целостных систем, тесно взаимосвязанных между собой, а также в упорядоченности строения каждой системы. Такая структура бесконечна в количественном и качественном отношениях.

    Проявлениями структурной бесконечности материи выступают:

    • неисчерпаемость объектов и процессов микромира;
    • бесконечность пространства и времени;
    • бесконечность изменений и развития процессов.

    Из всего многообразия форм объективной реальности эмпирически доступной всегда остается лишь конечная область материального мира, которая ныне простирается в масштабах от 10-15 до 1028 см, а во времени - до 2х109 лет.

    Структурность и системная организация материи относятся к числу важнейших ее атрибутов. Они выражают упорядоченность существования материи и те ее конкретные формы, в которых она проявляется.

    Материальный мир един: мы подразумеваем, что все его части - от неодушевленных предметов до живых существ, от небесных тел до человека как члена общества - так или иначе связаны.

    Системой является то, что определенным образом связано между собой и подчинено соответствующим законам.

    Система - это внутреннее или внешнее упорядоченное множество взаимосвязанных и взаимодействующих элементов.

    Упорядоченность множества подразумевает наличие закономерных отношений между элементами системы, которое проявляется в виде законов структурной организации. Внутренняя упорядоченность имеется у всех природных систем, возникающих в результате взаимодействия тел и естественного саморазвития материи. Внешняя характерна для созданных человеком искусственных систем: технических, производственных, и т.п.

    Структурные уровни материи образованы из определенного множества объектов какого-либо класса и характеризуются особым типом взаимодействия между составляющими их элементами.

    Критерием для выделения различных структурных уровней служат следующие признаки:

    • пространственно-временные масштабы;
    • совокупность важнейших свойств;
    • специфические законы движения;
    • степень относительной сложности, возникающей в процессе исторического развития материи в данной области мира;
    • некоторые другие признаки.

    3. ВЗАИМОСВЯЗЬ МИКРО-, МАКРО- И МЕГАМИРОВ

    Микромир - это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблю-даемых микрообъектов, пространственная разномерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечно-сти до 10-24 с.

    Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

    Мегамир - это планеты, звездные комплексы, галактики, метагалактики - мир огромных космических масштабов и скоро-стей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и мил-лиардами лет.

    И хотя на этих уровнях действуют свои специфические зако-номерности, микро-, макро - и мегамиры теснейшим образом взаи-мосвязаны.

    На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 -18 см., за время - порядка 10-22 с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

    С увеличением размеров объектов уменьшается энергия взаимодействия. Если принять энергию гравитационного взаимодействия за единицу, то электромагнитное взаимодействие в атоме будет в 10 39 больше, а взаимодействие между нуклонами - составляющими ядро частицами - в 10 41 раз больше. Чем меньше размеры материальных систем, тем более прочно связаны между собой их элементы.

    Деление материи на структурные уровни носит относительный характер. В доступных пространственно-временных масштабах структурность материи проявляется в ее системной организации, существовании в виде множества иерархически взаимодействующих систем, начиная от элементарных частиц и кончая Метагалактикой.

    Говоря о структурности - внутренней расчлененности материального бытия, можно отметить, что сколь бы ни был широк диапазон мировидения науки, он тесно связан с обнаружением все новых и новых структурных образований. Например, если раньше взгляд на Вселенную замыкался Галактикой, затем расширился до системы галактик, то теперь изучается Метагалактика как особая система со специфическими законами, внутренними и внешними взаимодействиями.

    4. ПРЕДСТАВЛЕНИЕ О КЛАССИЧЕСКОЙ ФИЗИКЕ, О ПОЛЕ И ВЕЩЕСТВЕ КАК ВИДАХ МАТЕРИИ

    Материя - фундаментальное понятие, связанное с любыми объектами, существующими в природе, о которых мы можем судить благодаря нашим ощущениям. Физика описывает материю как нечто, существующее в пространстве и во времени (в пространстве-времени) - представление, идущее от Ньютона (пространство - вместилище вещей, время - событий); либо как нечто, само задающее свойства пространства и времени - представление, идущее от Лейбница и, в дальнейшем, нашедшее выражение в Общей Теории Относительности Эйнштейна. Изменения во времени, происходящие с различными формами материи, составляют физические явления.

    Материя существует в двух видах - вещество и поле. Они строго разделены и их превращение друг в друга невозможно. Главным является поле, а значит основным свойством материи является непрерывность в противовес дискретности (концепция континуального непрерывного строения материи).

    Вещество. Классическое вещество может находиться в одном из трех агрегатных состояний: газообразном, жидком или твердом. Кроме того, выделяют высокоионизованное состояние вещества (чаще газообразного, но, в широком смысле, любого агрегатного состояния), называемое плазмой.

    В химическом отношении все вещества подразделяют на простые и сложные (химические соединения), а также на неорганические и органические вещества.

    Поле в физике — одна из форм материи, характеризующая все точки пространства (или, шире, пространства-времени) и обладающая бесконечным числом степеней свободы. Каждой точке пространства при этом присваивается определённая физическая величина. Эта величина, как правило, меняется при переходе от одной точки к другой. В зависимости от математического вида этой величины выделяют скалярные, векторные, тензорные и спинорные поля.

    Также поля делятся в зависимости от своей природы на электромагнитные, гравитационные, магнитное, электрическое и поля ядерных сил. Проявляются поля в виде взаимодействия (переносимого с конечной скоростью) тел (при этом сила взаимодействия определяется различными характеристиками тел: массой для гравитационного поля, зарядом для электромагнитного и т. д.), которые в квантовой физике объясняются передачей специфичных для каждого типа поля частиц (фотонов для электромагнитного, гипотетических гравитонов для гравитационного и т. д.). Долгое время считалось, что поле является только наглядным теоретическим объяснением таких явлений, как световые волны, пока в 1887 Генрих Рудольф Герц не доказал существование электромагнитного поля экспериментально.

    5. КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ В СОВРЕМЕННОЙ ФИЗИКЕ

    Корпускулярно-волновой дуализм - свойство любой микрочастицы обнаруживать признаки частицы (корпускулы) и волны. Наиболее ярко корпускулярно-волновой дуализм проявляется у элементарных частиц. Электрон, нейтрон, фотон в одних условиях ведут себя как хорошо локализованные в пространстве материальные объекты (частицы), двигающиеся с определёнными энергиями и импульсами по классическим траекториям, а в других - как волны, что проявляется в их способности к интерференции и дифракции. Так электромагнитная волна, рассеиваясь на свободных электронах, ведёт себя как поток отдельных частиц - фотонов, являющихся квантами электромагнитного поля (Комптона эффект), причём импульс фотона даётся формулой р = h/1, где р - длина электромагнитной волны, а h - постоянная Планка. Эта формула сама по себе - свидетельство дуализма. В ней слева - импульс отдельной частицы (фотона), а справа - длина волны фотона.

    Дуализм электронов, которые мы привыкли считать частицами, проявляется в том, что при отражении от поверхности монокристалла наблюдается дифракционная картина, что является проявлением волновых свойств электронов. Количественная связь между корпускулярными и волновыми характеристиками электрона та же, что и для фотона: р = h/1 (р - импульс электрона, а h - его длина волны де Бройля).

    Корпускулярно-волновой дуализм лежит в основе квантовой физики.

    6. СТРУКТУРА АТОМА С ТОЧКИ ЗРЕНИЯ СОВРЕМЕННОЙ ФИЗИКИ

    Гипотеза об атомах как неделимых частицах вещест-ва была возрождена в естествознании и прежде всего в физике и химии для объяснения таких эмпирических законов, как законы Бойля — Мариотта и Гей-Люссака для идеальных газов, теплового расширения тел и раз-личных химических законов. В самом деле, закон Бойля — Мариотта утверждает, что объем газа обратно про-порционален его давлению, но не объясняет почему. Аналогично этому при нагревании тела его размеры увеличиваются, но эмпирический закон теплового рас-ширения не объясняет причину такого расширения.

    Очевидно, что для такого объяснения необходимо выйти за рамки наблюдаемых зависимостей, которые выражаются в эмпирических законах, и обратиться к теоретическим гипотезам и законам. В отличие от эм-пирических законов они содержат понятия и величины, относящиеся к ненаблюдаемым объектам. Именно та-кими объектами являются атомы, а также образованные из них молекулы. С помощью атомов и молекул в кине-тической теории вещества убедительно объясняются все перечисленные и другие известные эмпирические зако-ны. В химии атом обычно определяют как наименьшую часть или единицу химического элемента.

    Однако попытка сведения всех многообразных и слож-ных свойств и закономерностей тел и явлений окружаю-щего мира к более простым вряд ли могла считаться ус-пешной, хотя бы потому, что на каждом уровне познания раскрывались новые границы и находились новые недели-мые последние частицы материи. Вплоть до конца про-шлого века такой частицей считался атом, но крупнейшие открытия в физике привели к отказу от такой точки зре-ния. Среди этих открытий следует отметить, во-первых, обнаружение явлений естественной радиоактивности таких химических элементов, как радий и уран. Оказалось, что эти элементы в естественных условиях испускают специ-фические радиоактивные лучи и в результате превращают-ся в другие химические элементы, а в конечном итоге - свинец. Отсюда непосредственно следовало, что атомы вовсе не являются неизменными, неделимыми и последними кирпичиками мироздания. Вскоре после радиоактивности была открыта мельчайшая частица электричества — электрон. В 1913 г. Э. Резерфорд, исследуя рассеяние α-частиц атомами тяжелых элементов, показал, что основная часть массы атома сосредоточена в его центральной части — ядре, так как вдали от него α -частицы проходят беспрепятственно. Основываясь на этих экспе-риментах, он предложил планетарную модель атома, со-гласно которой вокруг массивного ядра вращаются по сво-им орбитам отрицательно заряженные электроны.

    Впоследствии эта модель была значительно модифи-цирована. Оказалось, что элек-троны не могут вращаться по любым орбитам, а только по стационарным, ибо в противном случае они бы не-прерывно излучали энергию и упали бы на ядро, и атом самопроизвольно разрушился. Ничего подобного, одна-ко, не наблюдается, так как атомы являются весьма ус-тойчивыми образованиями. Все эти и связанные с ними революционные открытия невозможно было понять и объяснить с точки зрения старой, классической физики.

    После того, когда физики установили, что атом не является последним кирпичиком мироздания и сам он построен из более простых, элементарных частиц, идея поиска таких частиц заняла главное место в их исследо-ваниях. По-прежнему мысль физиков была устремлена на то, чтобы свести все многообразие сложных свойств тел и явлений природы к простым свойствам неболь-шого числа первичных, фундаментальных частиц, кото-рые впоследствии были названы элементарными. Наиболее известными элементарными частицами явля-ются электрон, фотон, пи-мезоны, мюоны, тяжелые лептоны и нейтрино. Позже были открыты частицы с весьма экзотическими названиями: странные частицы, мезоны со скрытым "очарованием ", "очарованные " частицы, ипсилион -частицы, разнообразные резонансные частицы и многие другие. Общее их число превышает 350. Поэтому вряд ли все такие частицы можно назвать подлинно элементарными, не содержащими других элементов. Это убеж-дение усиливается в связи с гипотезой о существовании кварков, из которых, по предположению, построены все известные элементарные частицы.

    Одна из характерных особенностей элементарных частиц состоит в том, что они имеют крайне незначи-тельные массы и размеры. Масса большинства из них — порядка массы протона, т. е. 1,6 х 10 -24г, а размеры порядка 10 -16 см. Другое их свойство заключается в способности рождаться и уничтожаться, т. е. испускать-ся и поглощаться при взаимодействии с другими части-цами. Например, превращения пары электрон и позитрон в два фотона: е - + е + -> 2γ

    Подобные же взаимопревращения происходят и с другими элементарными частицами.

    Рис. 2. Структура атома

    7. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ИХ СВОЙСТВА

    В соответствии с достижениями квантовой физики основополагающим понятием современного атомизма является понятие элементарной частицы, но им присущи такие свойства, которые не имели ничего общего с атомизмом древности.

    Развитие физики микромира показало неисчерпаемость свойств элементарных частиц и их взаимодействий. Все частицы, имеющие достаточно большую энергию, способны к взаимопревращениям, но при соблюдении ряда законов сохранения. Число известных элементарных частиц постоянно растет и превышает уже 300 разновидностей, включая неустойчивые резонансные состояния. Важнейшим свойством частицы является ее масса покоя. По этому свойству частицы делятся на 4 группы:

    1. Легкие частицы - лептоны (фотон, электрон, позитрон). Фотоны не имеют массы покоя.

    2. Частицы средней массы - мезоны (мю-мезон, пи-мезон).

    3. Тяжелые частицы - барионы. К ним относятся нуклоны - составные части ядра: протоны и нейтроны. Протон - самый легкий барион.

    4. Сверхтяжелые - гипероны. Устойчивых разновидностей немного: фотоны (кванты электромагнитного излучения); гравитоны (гипотетические кванты гравитационного поля); электроны; позитроны (античастицы электронов); протоны и антипротоны; нейтроны; нейтрино - самая загадочная из всех элементарных частиц.

    Нейтрино играет большую роль в космических процессах во всей эволюции материи во Вселенной. Время их жизни практически бесконечно. По подсчетам ученых, нейтрино уносят значительную долю излучаемой звездами энергии. Наше Солнце теряет за счет излучения нейтрино примерно 7% энергии, на каждый квадратный сантиметр Земли перпендикулярно солнечным лучам ежесекундно падает примерно 300 миллионов нейтрино. Дальнейшая судьба этого излучения неизвестна, но, очевидно, нейтрино должно вновь включиться в круговорот материи в природе.

    Особенностью элементарных частиц является то, что большинство из них могут возникать при столкновении с другими частицами достаточно высокой энергии: протон большой энергии превращается в нейтрон с испусканием пи-мезона. При этом элементарные частицы распадаются на другие: нейтрон - на электрон, протон и антинейтрино, а нейтральный пи-мезон - на два фотона. Пи-мезоны, таким образом, являются квантами ядерного поля, объединяющими нуклоны и ядра.

    В ходе развития науки открываются все новые свойства элементарных частиц. Взаимная обусловленность свойств частиц свидетельствует о сложной их природе, наличии многогранных связей и отношений.

    У большинства элементарных частиц есть античастицы, отличающиеся противоположными знаками электрических зарядов и магнитных моментов: антипротоны, антинейтроны и т.д. Из античастиц могут быть образованы устойчивые атомные ядра и антивещество, подчиняющееся тем же законам движения, что и обычное вещество. В больших количествах антивещество в космосе не обнаружено, поэтому существование «антимира», т.е. галактик из антивещества является проблематичным.

    Таким образом, с каждым новым открытием строение микромира уточняется и оказывается все более сложным. Чем глубже мы уходим в него, тем больше новых свойств обнаруживает наука.

    8. МОДЕЛИ ВСЕЛЕННОЙ, РАЗРАБОТАННЫЕ В СОВРЕМЕННОЙ КОСМОЛОГИИ

    Современные космологические модели Вселенной основы-ваются на общей теории относительности А. Эйнштейна, со-гласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологиче-ских моделей Вселенной. Первая модель была разработана са-мим Л. Эйнштейном в 1917 г. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однород-но и изотропно, материя в среднем распределена в ней равно-мерно, гравитационное притяжение масс компенсируется уни-версальным космологическим отталкиванием.

    Эта модель казалась в то время вполне удовлетворительной, поскольку она согласовывалась со всеми известными фактами. Но новые идеи, выдвинутые А. Эйнштейном, стимулировали дальнейшее исследование, и вскоре подход к проблеме реши-тельно изменился.

    В том же 1917 г. голландский астроном В. де Ситтер пред-ложил другую модель, представляющую собой также решение уравнений тяготения. Это решение имело то свойство, что оно существовало бы даже в случае "пустой" Вселенной, свободной oт материи. Если же в такой Вселенной появлялись массы, то решение переставало быть стационарным: возникало некото-рого рода космическое отталкивание между массами, стремя-щееся удалить их друг от друга и растворить всю систему. Тен-денция к расширению, по В. де Ситтеру, становилась заметной лишь на очень больших расстояниях.

    В 1922 г. российский математик и геофизик Л.А. Фридман отбросил постулат классической космологии о стационарности Вселенной и дал принятое в настоящее время решение космо-логической проблемы.

    Решение уравнений А.А. Фридмана, допускает три возможно-сти.:

    1. если средняя плотность вещества и излучения во Вселенной равна некоторой критической величине, мировое пространство оказывается евклидовым и Вселенная неограниченно расширяется от первоначального точечного состояния;
    2. если плотность меньше критической, пространство обладает геометрией Лобачевского и так же неограниченно расширяется;
    3. если плотность больше критической, пространство Вселенной оказывается римановым, расширение на некотором эта-пе сменяется сжатием, которое продолжается вплоть до первона-чального точечного состояния.

    По современным данным, средняя плотность материи во Вселенной меньше критической, так что более вероятной считается модель Лобачевского, т.е. пространст-венно бесконечная расширяющаяся Вселенная. Не исключено, что некоторые виды материи, которые имеют большое значение для величины средней плотности, пока остаются неучтенными. В связи с этим делать окончательные выводы о конечности или бес-конечности Вселенной пока преждевременно.

    Расширение Вселенной считается научно установленным фактом. Первым к поискам данных о движении спиральных га-лактик обратился В. де Ситтер. Обнаружение эффекта Доплера, свидетельствовавшего об удалении галактик, дало толчок даль-нейшим теоретическим исследованиям и новым улучшенным измерениям расстояний и скоростей спиральных туманностей.

    В 1929 г. американский астроном Э.П.Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию,- система галактик расширяется.

    Но то, что в настоящее время Вселенная расширяется, еще не позволяет однозначно решить вопрос в пользу той или иной модели.

    9. ОСНОВНЫЕ ЭТАПЫ ЭВОЛЮЦИИ ВСЕЛЕННОЙ С ТОЧКИ ЗРЕНИЯ СОВРЕМЕННОЙ НАУКИ

    В качестве одного из наиболее вероятных сценариев эволюции Вселенной, в рамках которого удается решить большинство космологических проблем, современная космология рассматривает сценарий, включающий инфляционную стадию. Инфляция в переводе с латинского - вздутие. Инфляционная стадия предполагает процесс вздутия Вселенной. Основная идея инфляционной теории состоит в том, что и расширение Вселенной и весь последующий ход эволюционного развития рассматриваются из состояния, когда вся материя была представлена только физическим вакуумом. Однако в физическом смысле вакуум не есть пустота, в нем постоянно происходят процессы рождения и уничтожения всевозможных частиц, квантов, полей.

    Модель Большого взрыва . Считается, что после того как 15 млрд. лет назад произошел Большой взрыв, началось постепенное охлаждение и расширение Вселенной. Причины Большого взрыва и перехода к расширению во всех моделях Вселенной считаются неясными и выходящими за рамки компетенции любой физической современной теории. Но если взрыв был, то дальше картина выглядит следующим образом:

    1. Через 10 -43 с от начала расширения началось рождение частиц и античастиц.

    2. Через 10 -6 с - возникновение протонов и антипротонов и их аннигиляция. Количество протонов на одну стомиллионную часть (10 -8) превышало количество антипротонов, в результате чего после аннигиляции возникло и сохранилось то вещество, из которого возникли все галактики, звезды и планеты. Если бы число протонов было бы равно числу антипротонов, то вещество полностью перешло бы в излучение и невозможно было бы наблюдение Космоса и Земли.

    3. Через 1 с после начала расширения стали рождаться и аннигилировать электронно-позитронные пары.

    4. Через 1 мин начались ядерный синтез и образование ядер дейтерия и гелия. На долю последних пришлось примерно 30% от массы оставшихся протонов. Образование более тяжелых элементов в рамках этой теории объяснить не удалось, так как не хватило времени для их синтеза в процессе расширения. Эти элементы образуются в последующей эволюции звезд в результате термоядерных реакций в их недрах, а тяжелые элементы синтезируются при взрыве сверхновых и затем выбрасываются в космическое пространство, где они со временем концентрируются в газово-пылевые облака, из которых образуются звезды второго поколения типа Солнца и планеты вокруг них.

    Через 300 тыс. лет после Большого взрыва произошло отделение излучения от вещества, Вселенная стала прозрачной, в последующие миллиарды лет стали формироваться галактики, первичные звезды в шаровых скоплениях и звезды второго поколения в спиральных рукавах галактик.

    10. ЗАКЛЮЧЕНИЕ

    Издавна люди пытались найти объяснение многообразию и причудливости мира.

    Все вышеизложенные революционные открытия в физике перевернули ранее существующие взгляды на мир. Исчезла убежденность в универсальности законов классической механики, ибо разрушились прежние представления о неделимости атома, о постоянстве массы, о неизменности химических элементов и т.д.

    В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее составные части, организованные в целостность. Для обозначения целостности объектов в науке было выработано понятие системы.

    Исходным пунктом всякого системного исследования является представление о целостности, изучаемой системы. Целостность системы означает, что все ее составные части, соединяясь вместе, образуют уникальное целое, обладающее новыми интегративными свойствами.

    В естественных науках выделяются два больших класса материальных систем: системы неживой природы и системы живой природы.

    В неживой природе в качестве структурных уровней организации материи выделяют элементарные частицы, атомы, молекулы, поля, физический вакуум, макроскопические тела, планеты и планетные системы, звезды и звездные системы - галактики, системы галактик - метагалактику.

    В живой природе к структурным уровням организации материи относят системы доклеточного уровня - нуклеиновые кислоты и белки; клетки как особый уровень биологической организации, представленные в форме одноклеточных организмов и элементарных единиц живого вещества; многоклеточные организмы растительного и животного мира; надорганизменные структуры, включающие виды, популяции и биоценозы, и, наконец, биосферу как всю массу живого вещества.

    Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта.

    Изучение материи и её структурных уровней является необходимым условием формирования мировоззрения, независимо от того, окажется ли оно в конечном счёте материалистическим или идеалистическим.

    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

    1. Вайнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной /С.Вайнберг. -М.: Наука, 1981
    2. Дорфман Я.Г. Всемирная история физики с начала века до середины века 8Я.Г.Дорфман. -М.: Наука, 1979
    3. Мэрион Дж.Б. Физика и физический мир /Дж.Б.Мэрион. -М.: Мир, 1975
    4. Хорошавина С.Г. Концепции современного естествознания: курс лекций / Изд. 4-е. - Ростов н/Д: Феникс, 2005
    5. Шкловский И.С. Звезды, их рождение, жизнь и смерть /И.С.Шкловский. -М.: Наука, 1977

    Понравилось? Нажмите на кнопочку ниже. Вам не сложно , а нам приятно ).

    Чтобы скачать бесплатно Контрольные работы на максимальной скорости, зарегистрируйтесь или авторизуйтесь на сайте.

    Важно! Все представленные Контрольные работы для бесплатного скачивания предназначены для составления плана или основы собственных научных трудов.

    Друзья! У вас есть уникальная возможность помочь таким же студентам как и вы! Если наш сайт помог вам найти нужную работу, то вы, безусловно, понимаете как добавленная вами работа может облегчить труд другим.

    Если Контрольная работа, по Вашему мнению, плохого качества, или эту работу Вы уже встречали, сообщите об этом нам.

    Материалистическое понимание субстанции прошло более чем двух тысячелетий период развития. Начало ему было положено с упрощенного представления о праматери, т.е. о чем-то, что предшествовало современной материи, поэтому является субстанцией.

    Понятие материя - фундаментальная категория в философии и естествознании. В переводе с латинского materia означает вещество. Первоначальные представления о материи возникли уже в античности, где представители различных философских школ отождествляли ее с материальной субстанцией, лежащей в основе бытия: вода (Фалес), воздух (Анаксимен), огонь (Гераклит), атомы (Демокрит) и т. д.

    В средние века материю понимали, в основном, как материал, из которого сделаны вещи. Материя как философская категория не развивалась, хотя мы и находим у Августина Блаженного понятия «материя духовная и телесная».

    В XVII - XVIII вв. складывается новое понимание материи, отличное от представлений древних. Был сделан вывод, что материя - не конкретное вещество (земля, огонь, вода, воздух и т.д.), а физическая реальность как таковая. В этот период от философии отпочковываются и получают развитие в качестве самостоятельных отраслей математические, естественные я общественные науки. Наиболее развитыми науками того времени были механика и геометрия, поэтому в воззрениях на материю преобладал механицизм. Материя определяется как совокупность чувственно воспринимаемых тел. Материя отождествляется с веществом, состоящим из неделимых, неизменных атомов, обладающим универсальными свойствами: механической массой, весом, непроницаемостью, инерцией. Все вещественное обладает этими свойствами, а значит, вполне логично перенести эти свойства с конкретных веществ на Вещество как таковое.

    В это же время появилось определение материи, данное английским философом Дж. Беркли, классиком субъективного идеализма. В своей работе «Диалог между философом Беркли и материалистом» он вкладывает в уста материалиста понятие материи как реальности, которая воздействует на наши ощущения, но не зависит от них. Беркли, будучи субъективным идеалистом, всю свою философскую энергию направил на борьбу против материализма и его основного понятия - материи, но именно данное им определение материи было использовано французскими материалистами, которые под материей понимали все то, что действует на наши органы чувств. Под этим всем, что действует на наши органы чувств, они подразумевали вещество, представляющее собой совокупность конкретных частиц-атомов, тождественных между собой, обладающих универсальными свойствами. В основании материи-вещества лежат фундаментальные законы мироздания, и прежде всего закон сохранения вещества.

    Такое понимание материи было исторически прогрессивным, но и ограниченным. Немецкий философ Ф. Энгельс был первым, кто указал на эту ограниченность. Он считал, что нельзя сводить материю к совокупности конкретных частиц-атомов, поскольку они сами могут иметь сложную структуру. Ему принадлежит определение материи как общего понятия, охватывающего все многообразие вещей.

    Ограниченность концепции отождествления материи с веществом стала особенно очевидной для естествознания на рубеже XIX-XX вв. Именно в тот период в физике разразился кризис, связанный с революционными открытиями.

    В качестве одного из вариантов выхода из кризиса и дальнейшего развития физики и философии В.И. Ленин предложил новое методологическое основание - новое определение материи: «Материя есть философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от них».

    Ленин считал, что необходимо разграничить философское понимание материи и физические представления о ее свойствах и строении, и дал философское определение, заостряя внимание на том, что материя как категория не обозначает ничего, кроме объективной реальности, а значит, что какие бы ни были открыты новые состояния материи, достаточно определить: является ли это открытие объективной реальностью или нет. Далее своим определением он подчеркивал, что материя есть первичная реальность по отношению к нашим ощущениям, так как она существует независимо от них.

    Определение Ленина является более диалектичным по сравнению с прежними метафизическими определениями, так как оно открыто для последующих знаний и развития. Но, как любое определение, оно исторически ограничено. Оно, скорее, гносеологично, чем онтологично, ибо сказать, что материя - объективная реальность, - это в содержательном плане ничего не сказать. Данное определение работает против субъективного идеализма, но совершенно не работает против идеализма объективного. Ведь и бог, и мировой разум, и абсолютная идея вписываются в определение объективной реальности для верующего в них человека. Бог является к верующему в конкретном образе, который тот воспринимает с помощью органов чувств.

    Но, несмотря на указанные недостатки, в материализме сегодня нет более нового и совершенного определения материи. Наряду с мировоззренческим следует отметить и методологическое значение этого определения для развития естествознания. Идея неисчерпаемости материи, высказанная В.И. Лениным, сейчас является одним из руководящих методологических принципов естественнонаучного исследования. Это особенно ярко проявляется в современных взглядах на строение материи, сложившихся в естественных науках.

    Кратко охарактеризуем современные представления о структурной организации материи . Структурные уровни материи образованы из определенного множества объектов какого-либо класса и характеризуются особым типом взаимодействия между составляющими их элементами. Критериями выделения структурных уровней служат пространственно-временные масштабы, совокупность важнейших свойств и законов изменения, степень относительной сложности, возникшей в процессе исторического развития материи в данной области мира.

    Неорганическая природа разбивается на три 1)микро-, 2)макро- и 3)мегамиры, имеющие следующую последовательность структурных уровней: 1) субмикроэлементарный – микроэлементарный (элементарные частицы и полевые взаимодействия) – ядерный – атомарный – молекулярный – 2) уровень макроскопических тел (ряд подуровней) – 3) планеты – звездно-планетные комплексы – галактики – метагалактики.

    Живая природа подразделяется на следующие уровни: биологических макромолекул – клеточный уровень – микроорганизменный – органов и тканей – организма в целом – популяционный – биоценозный – биосферный. Общая основа жизни – органический метаболизм (обмен веществом, энергией и информацией со средой) – специфицируется в каждом из выделенных уровней.

    Социальная действительность представлена уровнями: индивидов – семьи – коллективов – социальных групп – классов – национальностей и наций – государств и систем государств – общества в целом.

    Отметим также, что более высокие уровни системной организации материи возникают в рамках сравнительно небольшого множества явлений предыдущего уровня. Так, из трёх основных групп уровней неорганической природы (микро-, макро- и мегамир) лишь на уровне меньшей части явлений макромира возникает жизнь, точно также социум возникает у представителей единственного биологического вида. Усложнению системной организации материи тем самым сопутствует сужение возможностей его реализации.

    Любое членение мира на составные части условны, как условна любая граница, разделяющая его части. Условны понятия и схемы, которые важны для нас как нечто, лежащее в основании созданной нами условности, которая потом властвует над нашим воображением по принципу созданной нами азбуки. Но именно из неё создается стройная система языка и понятий, утверждающих единство ее структуры, единство Мира, состоящего из ограниченного числа атомов в Периодическом законе.

    Привычное деление мира на микро- и макромир также условно, поскольку слишком велики различия между объектами этих иерархических ступеней. Поэтому мы предложим еще одну систему, поскольку она нам кажется лучше. Другие же найдут в ней нечто такое, что заставит их построить свою, которая им покажется более отвечающей потребности исследователя в её детализации для осмысления картины Мира.

    Под структурой (от латинского слова structure – строение, порядок, расположение) понимается закономерное пространственное расположение единичного в целом, как совокупность устойчивых связей элементарных частей объекта, обеспечивающих его целостность и тождественность самому себе, сохранение его основных свойств под влиянием внутренних и внешних сил.

    Структура вселенной, например, представлена закономерным пространственным расположением и устойчивыми связями галактик, скоплений галактик и т.д. Структура галактик состоит из закономерно расположенных в них и устойчивых связей звезд и звездных скоплений. Структура звездной системы (например, Солнечной) представляет собой закономерное расположение и устойчивость связей планет, астероидов и т.д. Структура живого и неживого вещества представляет собой закономерное пространственное расположение и устойчивость связей атомов, молекул. Структура атома характеризуется закономерным расположением и устойчивостью связей частиц, расположенных вокруг ядра и внутри него.

    Основными принципами системы являются:

      ее целостность (принципиальная несводимость свойств системы к сумме свойств ее элементов);

      структурность (закономерность связей и отношений элементов системы);

      взаимозависимость системы от коллективных внутренних (обусловленных структурой) сил и свойств окружающей среды;

      соподчиненность или иерархичность (каждый элемент системы может рассматриваться как подсистема свойств системы другого уровня);

      множественность описания каждой системы на основе множества слагающих ее подсистем, свойств, отношений этих свойств.

    Структурные уровни организации материи могут быть представлены схемой, таблица 2.1.5-1.

    Микромир неживой материи Квантовый мир. Мир частиц. Мир структуры атомов. Мир молекул, элементарных ячеек кристаллических структур и текстур, мир молекул жидкостей, газов, заряженных ионов плазмы.
    Микромир живого вещества Мир структуры клетки , нуклеотидов и белков. Мир бактерий и вирусов.
    Мезомир неживой материи Мир окружающей действительности человека, с которым связана его повседневная жизнь. Мир минералов, пород, слоев Земли, ландшафтов, биосферы. Искусственно созданный материальный мир. Мир Земли, как планеты Солнечной системы
    Мезомир живого Мир насекомых, животных и растений, популяций, экосистем окружающих повседневную жизнь человека.
    Макромир Мир структуры Солнечной системы: Солнца, планет и составляющих элементов структуры Солнечной системы.
    Мегамир Мир структуры нашей галактики и Метагалактики (видимой части вселенной)
    Супермир? Мир структуры взаимодействующих вселенных (?). Множество миров

    Таблица 2.1.5-1

    Как видим, такое членение на семь иерархических уровней мира условно, как условны и границы подразделений. Граница – это мир условностей, которые меняются под влиянием познания действительного мира. Например, границы микромира и макромира в существующей иерархии определяются разрешающей способностью глаза. С помощью созданных технических средств, приборов и других физических устройств человек смог заглянуть в структуру микромира, макромира и мегамира. Наличие супермира, как совокупности взаимодействующих вселенных, предполагается концепцией множественности миров, выдвинутой ещё Д.Бруно. Отсюда подсистемы окружающего нас материального мира слагают единую бесконечную в пространстве-времени систему или структуру Супермира.

    Условность и необходимость подразделений мира на его составные элементы исходит из необходимости познать мир по частям и в целом. В процессе познания расширяются представления о границах подразделений. Например, границы мезомира в процессе развития человека и его сознания также непрерывно расширяются. На заре человеческой цивилизации – это он сам и его мир естественной окружающей его природной среды. Позже появляются искусственные орудия труда, машины, созданные самим человеком. Потом человек выходит в ближайший космос, и его окружающей действительностью являются объекты околоземного пространства, затем, в отдаленном будущем, всей Солнечной системы. То есть, постепенно мезомир расширяет свои границы до объектов макромира. С развитием космических путешествий за пределы Солнечной системы объектом окружающего мира может служить и мегамир. Пионер-10, творение человека, вышел за пределы Солнечной системы и уже находится в структуре Млечного Пути – нашей галактики.

    Удивительно, но человеческий разум способен создавать и виртуальный мир, в котором может путешествовать, испытывать наслаждение от открытий, страдать, любить и ненавидеть. Граница виртуального и действительного мира также условна и скоротечна, насколько мы можем быстро перейти от теоретических рассуждений об устройстве мира к практическим реализациям идей на основе опыта.

    Поразителен также факт неразделимости живой и неживой материи на всех уровнях ее организации. «Живое – от живого!». Гласит принцип Пастера-Редди. Но живое возникло из неживого и является следствием эволюции неживого!

    Если существует микромир, мезомир и макромир живой материи, то логически Млечный путь (наша галактика), имея жизнь в Солнечной системе, сама является носителем жизни. Подобные рассуждения приведут нас к мысли о том, что жизнь является принадлежностью всей вселенной. Именно с появлением разума на Земле Метагалактика перешла в новое качество – стала разумной.

    Составные элементы живого (атомы, молекулы) представляют собой каждый в отдельности неживое вещество. Если разобрать живое на атомы, то последующей операцией сборки атомов невозможно создать живое. Для этого необходима вся история эволюции живого и неживого действительного окружающего мира вселенной. В этом заключается один из парадоксов членения мира на живую и неживую его составляющие. Скорее надо предположить, что все вещество во вселенной просто пронизано элементами, способными к собственной самоорганизации под названием жизнь, чем разделять понятия живого и неживого. Сама же вселенная представляет собой развивающееся и непрерывно совершенствующееся единство бесконечно малого (нечто) и бесконечно большого (всего).

    Материя структурирована не только движением, пространством, временем, формой, но и размерностью, уровнем организации. Но если движение, пространство и время в материальном мире являются непременным атрибутом сосуществования, то уровень организации материи есть классификационный принцип, удобный для расчленения (дробления) признаков существования материального мира с целью его дискретного познания путем последовательного приближения от частного к общему или наоборот.

    Иерархические уровни организации вещества в естественнонаучных дисциплинах разные. В органическом мире они разделяются на классы, типы, группы, семейства, рода, виды. В неорганическом мире иерархические уровни отвечают комплексам, формациям, породам, минеральным видам и т.д. Причем границы этого разделения, повторяем, весьма условны и определяются необходимостью получения информации о структурированной единице (части), изучением свойства которой, трансляции её в четырёхмерном пространстве мы можем понять, как устроено целое.

    Иерархия (от греч. hieros - священный и arche – власть). Расположение совокупности элементов в порядке от высшего к низшему рангу. Способ устройства сложных систем, при котором звенья системы распределены по различным уровням в соответствии с заданным критерием.

    Два иерархических уровня организации материи – микро- и макромир (микрокосм и макрокосм) издавна разграничиваются естественными науками, поскольку в них проявляются формы движения несколько по-иному. Возникают новые взаимодействия. Но и это деление материального мира является условным. Ибо макромир состоит из структурированного вещества микромира бесконечно транслируемого в пространстве-времени всё существующее и будущее многообразие явлений, состояний, движений объектов.

    Уже в древности существовала идея о микро- и макрокосме. Микрокосм – мир человека, макрокосм – вся Природа. Это как бы живые существа, созданные по единому образцу и наделенные единой душой… Уже в древности существовал принцип, что человек является мерой всех вещей, поскольку люди видели в строении его тела гармонию, и эту гармонию переносили на измеряемый ими мир через пропорции человеческого тела. Так было создано одно из чудес света – Парфенон, над разгадкой гармонии которого так долго бьются строители и архитекторы.

    Микрокосм и макрокосм (от греч., большой мир - вселенная и малый мир – человек). Натурфилософы XVI в., в особенности Парацельс, рассматривали вселенную как человеческий организм в увеличенном виде, а человека как вселенную в миниатюре и выводили отсюда, что между вселенной и человеком существует такая же связь, как и между членами одного телесного организма, и почему, например, звезды могут иметь влияние на судьбу человека.

    Последовательность расположения объектов во Вселенной по структурным уровням материи (СУМ) предполагает существование структурной организации сложных многоуровенных систем. Она проявляется в упорядочении взаимодействий между СУМ от высшего к низшему порядку. Предложена в работе Б.П. Иванова , таблица 2.1.5-2.

    Исходя из общего принципа единства мироустройства, современная наука на основе экспериментальных достижений описывает материю в диапазоне от 1∙10 -18 до 1∙10 26 м. Она проявляет себя как в форме конкретных объектов, так и среды.

    Поиски фундаментальных закономерностей, которые бы позволили структурировать мир таким образом, чтобы стало возможным предсказание любого исторического уровня его организации, продолжаются. С развитием квантовой механики, мир неожиданно представился «Летучим Голландцем», когда оказалось нельзя однозначно определиться в его реальных границах ни в пространстве, ни во времени. В границах так необходимых нам в привычном для нас макромире в силу двойственности природы микромира . Мир в пространстве микромира оказался «размазанным», а границы его выглядели настолько условными, что возникла необходимость для описания взаимодействий между его частицами прибегнуть к виртуальным частицам, «рождение» которых одновременно бы совпадало с их «смертью». И притом они успевали быть передаточным звеном такого взаимодействия.

    По представлениям Б.П.Иванова материя оказывается «не размазана», а группируется в пространстве определенным образом. Система материи состоит из сгустка (ядра) и окружающего его физического поля, находящиеся в определенных отношениях и связях друг с другом, образующих некую целостность (единство). Такая система материи названа им организационной формой материи (ОФМ) или локализованным объектом вселенной. Автор в строении материи проводит аналогию между строением частиц, атомов, звезд, галактик. То есть, на любом уровне организации материи, будь-то частица, атом, звезда или галактика определенно существует ядро и физическое поле, объединенные в одну единую систему организационной формы материи, которая является фундаментальной единицей всего известного мироздания, включая вселенную.

    Группу организованных форм материи, имеющих одно общее свойство, например, электрический заряд у ядер атомов элементов таблицы Д.И.Менделеева, автор объединяет в один структурный уровень материи (СУМ).

    Всю совокупность СУМ он вмещает в следующую иерархию, состоящую из элементов:

    • элементарные частицы;
    • ядра;
    • атомы;
    • молекулы;
    • кристаллы;
    • пыль;
    • микрометеороиды;
    • метеороиды;
    • кометы;
    • астероиды;
    • планеты;
    • звезды; скопления звезд;
    • шаровые скопления;
    • галактики;
    • скопления галактик;
    • сверхскопления галактик;

    Метагалактика.

    • Это также весьма условная иерархия. Поскольку она может быть дополнена, например, последовательным рядом:
    • кристалл, элементарная ячейка которого состоит из атомов или ионов, транслируемых по кристаллографическим направлениям;
    • минерал (состоящий из совокупности атомов, ионов, молекул);
    • порода (как совокупность слагающих ее различных минералов);
    • пыль (как совокупность кристаллов, минералов, пород разного состава) и т.д.;
    • формации, как сообщество геологических тел, объединяемые в парагенетическом, генетическом или в каком-то ином отношении, состоящие из пород, руд, минералов и т.д.

    Материальным объектом галактики являются и релятивистские объекты так называемых черных дыр и т.д.

    Тем не менее, в предлагаемой иерархии Б.П.Иванова прослеживается определенная закономерность. Между структурными уровнями материи наблюдаются скачкообразные изменения их обобщенных качественных характеристик, что позволило автору использовать в этой иерархии модель «квантовой лестницы», на ступеньках которой размещаются структурные уровни материи.

    В пределах одной ступени структурный уровень материи по Б.П.Иванову состоит из трех подуровней. В каждом подуровне наблюдается регулярная повторяемость свойств объектов по мере роста радиуса ядра ОФМ вследствие семикратной бифуркации. Свойство структурности в иерархии СУМ наследуют структурные уровни нижних ступеней. Например, Метагалактика состоит из сверхскоплений галактик, любая галактика в свою очередь состоит из звездных скоплений и т.д. вплоть к элементарным частицам. То есть в основе материи лежит понятие об элементарной части, которая повторяется, транслируется в пространстве-времени, в результате чего формируется целое: вещество и структура мира.

    Структурные уровни организации материи по Б.П.Иванову

    Номер СУМ Структурные уровни материи Верхние и нижние границы радиуса ядер ОФМ, м Средние геометрические радиусы скоплений ОФМ,м Кинетическая энергия скоплений ОФМ, Дж Собственные частоты скоплений, Гц
    21.0 К вышестоящим уровням материи
    20.0 Квазары 6,88·10 41 - 5,38·10 39 6,08·10 40 4,5·10 61 2,53·10 -60
    19.0 Радиогалактики 4,2·10 37 4,25·10 38 3,12·10 58 3,67·10 -57
    18.0 Сверхскопления галактик 3,2810 35 3,71·10 36 2,15·10 55 5,32·10 -54
    17.0 Скопления галактик 2,56·10 33 2,9·10 34 1,49·10 52 7,7·10 -51
    16.0 Кратные галактики 2,0·10 31 2,26·10 32 1,03·10 48 1,11·10 -47
    15.0 Гипергалактики 1,56·10 29 1,17·10 30 7,1·10 45 1,61·10 -44
    14.0 Галактики 1,22·10 27 1,38·10 28 4,9·10 42 2,32·10 -41
    13.0 Субгалактики 9,55·10 24 1,08·10 26 3,38·10 39 3,39·10 -38
    12.0 Гипершаровые скопления 7,46·10 22 8,44·10 23 2,33·10 36 4,9·10 -35
    11.0 Шаровые скопления звезд 5,83·10 20 6,59·10 21 1,61·10 33 7,1·10 -32
    10.0 Субшаровые скопления звезд 4,55·10 18 5,1·10 19 1,11·10 30 1,03·10 -28
    9.0 Рассеянные скопления звезд 3,56·10 16 4,0·10 17 7,69·10 26 1,49·10 25
    8.0 Кратные звезды 2,78·10 14 3,14·10 15 5,3·10 23 2,16·10 -22
    7.0 Гиперзвезды 2,17·10 12 2,43·10 13 3,66·10 20 3,1·10 -19
    6.0 Звезды 1,7·10 10 1,92·10 11 2,53·10 17 4,52·10 -16
    5.0 Субзвезды 1,33·10 8 1,5·10 9 1,75·10 14 6,55·10 -13
    4.0 Планеты 1,04·10 6 1,17·10 7 1,2·10 11 9,49·10 -10
    3.0 Астероиды 8092 9,15·10 4 8,33·10 7 1,37·10 -6
    2.0 Кометы 63,22 715 5,76·10 4 1,99·10 -3
    1.0 Глыбы-гиперметеороиды 0,494 5,588 39,75 2,88
    .0.1 Гравий-метеороиды 0,39·10 -3 4,36·10 -2 2,74·10 -2 4172
    .0.2 Песок-миллиметеороиды 3,0·10 -5 3,41·10 -4 1,89·10 -5 6,04·10 6
    .0.3 Алеврит-микрометеороиды (пыль) 2,35·10 -7 2,66·10 -6 1,3·10 -8 1,99·10 9
    .0.4 Кристалл 1,84·10 -9 2,08·10 -8 9,04·10 -12 1,27·10 13
    .0.5 Кластеры 1,44·10 -11 1,63·10 -10 6,24·10 -15 1,83·10 16
    .0.6 Молекулы 1,12·10 -13 1,27·10 -12 4,31·10 -18 2,66·10 19
    .0.7 Атомы 8,77·10 -16 9,95·10 -15 2,98·10 -21 3,85·10 22
    .0.8 Нуклиды 6,85·10 -18 7,76·10 -17 2,05·10 -24 5,57·10 25
    .0.9 Протоны 5,35·10 -20 6,06·10 -19 1,42·10 -27 8,0·10 28
    .0.10 Электроны 4,18·10 -22 4,73·10 -21 9,8·10 -31 1,17·10 32
    .0.11 Позитроны 3,27·10 -24 3,7·10 -23 6,77·10 -34 1,69·10 35
    .0.12 Субэлектроны 2,55·10 -26 2,9·10 -25 4,67·10 -37 2,45·10 38
    .0.13 γ- кванты 1,7·10 -28 2,26·10 -27 3,22·10 -40 3,55·10 41
    .0.14 Рентгеновские лучи 1,56·10 -30 1,76·10 -29 2,22·10 -43 5,14·10 44
    .0.15 Видимые лучи 1,22·10 -32 1,38·10 -31 1,53·10 -46 7,44·10 47
    .0.16 СВЧ и ВЧ 9,5·10 -35 1,08·10 -33 1,06·10 -49 1,08·10 51
    .0.17 Средние радиоволны 7,43·10 -37 8,4·10 -36 7,3·10 -53 1,56·10 54
    .0.18 Длинные радиоволны 5,80·10 -39 6,57·10 -38 5,05·10 -56 2,26·10 57
    .0.19 Низкие частоты 4,50·10 -41 5,1·10 -40 3,49·10 -62 3,27·10 60
    .0.20 Инфракрасные частоты 3,50·10 -43 4,0·10 -42 2,41·10 -62 4,74·10 63
    .0.21 21 cлой (СУМ) 2,77·10 -45 3,1·10 -44 1,66·10 -65 6,85·10 66
    .0.22 22 2,16·10 -47 2,4·10 -46 1,15·10 -68 9,94·10 69
    .0.23 23 1,69·10 -49 1,9·10 -48 7,94·10 -72 1,44·10 73
    .0.24 24 1,32·10 -51 1,5·10 -50 5,48·10 -75 2,08·10 76
    .0.25 25 1,0·10 -53 1,2·10 -52 3,78·10 -78 3,02·10 79
    .0.26 26 8,00·10 -56 9,1·10 -55 2,61·10 -81 4,37·10 82
    .0.27 27 6,30·10 -57 7,1·10 -57 1,8·10 -84 6,33·10 85
    .0.28 28 4,90·10 -60 5,5·10 -59 1,25·10 -87 9,17·10 88
    К внутренним структурным уровням материи и к ее эфиру

    Таблица 2.1.5-2

    По выше приведенным табличным данным Б.П.Ивановым граница микрокосма (внутреннего мира) и макрокосма определяется числом после.0., .0.1 и т.д. В микрокосм, таким образом, вошли структуры, начиная от гравийных частиц, песка, алеврита и меньшей размерности. Достоинство выше приведенной структурной иерархии на основе идеи организационной формы материи заключается в возможности определения дискретных границ размерности материального мира путем деления на коэффициент подобия равным числу 128 (для микрокосма) и путем умножения на этот же коэффициент (для макрокосма). Таким образом, микромир по Б.П. Иванову вполне дискретен и поддается граничному структурированию, но на границах микроструктур их свойства меняются скачкообразно.

    Макрокосм для Земли в этой классификации начинается с околоземного пространства и распространяется на всю внешнюю часть вселенной.

    Иерархический подход Б.П.Иванова хорош для описания научной картины мира. Он несколько будет смущать обывателя в той части, что подобное членение материального мира, хотя и охватывает все многообразие закономерно изменяющихся его свойств и структур, но не дает возможности образно выделить иерархическую соподчиненность, с которой обычно имеет дело сознание человека. Он чаще меряет не числом, а соотносимым масштабом, способностью разрешения глаза или осознанием размерности на уровне ощущений.

    В концепции «квантового рождения вселенной», выдвинутой в 1973 г. П. И. Фоминым и Е. Трионом, причинно-обусловленные связи на всех структурных уровнях Мира наблюдается в «начальном» состоянии вселенной, которое представляло собой физический вакуум. А причиной наблюдаемого ныне космологического расширения могла стать антигравитирующая способность вакуума, вызывающего отталкивание между «внесенными» в него частицами вещества. И для него давление отрицательно: p = - ε. Однако основным камнем преткновения квантового рождения вселенной заключается в необходимости объяснения, почему она выглядит изотропной при расширении из состояния сингулярности.

    Первое поколение космологических моделей соответствовало однородному и изотропному распределению материи, то есть описывало не реальное распределение вещества, а – усредненное по ячейкам, размер которых порядка межгалактических расстояний, с начальной сингулярностью – состоянием с бесконечной плотностью. Эволюция мира в этих моделях зависит от суммарной плотности вещества ρ в настоящую эпоху. И если ρ < ρ крит. (~10 -25 г/см 3), то пространство бесконечно («открытый мир») и наблюдающееся ныне космологическое расширение неограниченно; в случае ρ > ρ крит. – пространство конечно, а расширение, спустя некоторое время, должно смениться сжатием («замкнутый мир»). Открыт или замкнут, в рамках данных моделей Мир (Метагалактика) в настоящее время не ясно, так как современные наблюдательные оценки свидетельствуют о том, что ρ / ρ крит ~1.

    Второе поколение космологических моделей. Учет неоднородностей реального распределения вещества в Метагалактике привел к несколько иной картине её эволюции. Эти модели противоречат наблюдаемой глобальной изотропии реликтового (фонового) излучения. Потому как любое сколь угодно малое отклонение от изотропности быстро растет с расширением вселенной, и она не может открываться в пространстве изотропно, поскольку расширение идет быстрее, чем распространяется электромагнитное излучение.

    В моделях третьего поколения предусматривается «первичное квантование» параметров модели (приближение к полной квантовой модели мира). Однако модели третьего и второго поколений не позволяют объяснить изотропность Метагалактики, включая изотропность реликтового излучения, за исключением его флуктуации – дипольная компонента.

    Впервые понятие материя (hyle), встречается у Платона. Материя в его понимании некий лишенный качеств субстрат (материал), из которого образуются тела различной величины и очертаний; она бесформенна, неопределенна, пассивна. В дальнейшем материя, как правило, отождествлялась с конкретным веществом или атомами. По мере развития науки и философии понятие материи постепенно утрачивает чувственно-конкретные черты и становится все более абстрактным. Оно призвано охватить бесконечное многообразие всего реально существующего и несводимого к сознанию.
    В диалектико-материалистической философии материя определяется как объективная реальность, данная нам в ощущениях, существующая независимо от человеческого сознания и отображаемая им. Это определение - наиболее принимаемое в современной философской российской литературе. Материя - это единственно существующая субстанция. Она вечна и бесконечна, несотворима и неуничтожима, неисчерпаема и находится в постоянном движении, способна к самоорганизации и отражению. Она есть - causa sui, причина самой себя (Б.Спиноза). Все эти свойства (субстанциальность, неисчерпаемость, неуничтожимость, движение, вечность) неотделимы от материи и потому называются ее атрибутами. Неотделимы от материи так же и ее формы - пространство и время.
    Материя - это сложная системная организации. По современным научным данным в структуре материи можно выделить два крупных основных уровня (принцип деления - наличие жизни): неорганическая материя (неживая природа) и органическая материя (живая природа).
    Неорганическая природа включает следующие структурные уровни:
    1. Элементарные частицы - мельчайшие частицы физической материи (фотоны, протоны, нейтрино и др.), каждая из которых имеет свою античастицу. В настоящее время известно более 300 элементарных частиц (включая античастицы), в том числе и так называемые «виртуальные частицы», существующие в промежуточных состояниях очень короткое время. Характерная особенность элементарных частиц
    - способность к взаимным превращениям.
    2. Атом - мельчайшая частица химического элемента, сохраняющая его свойства. Он состоит из ядра и электронной оболочки. Ядро атома состоит из протонов и нейтронов.
    3. Химический элемент - совокупность атомов с одинаковым зарядом ядра. Известно 107 химических элементов (19 получены искусственно), из которых состоят все вещества неживой и живой природы.
    4. Молекула - наименьшая частица вещества, обладающая всеми его химическими свойствами. Состоит из атомов, соединенных химическими связями.
    5. Планеты - наиболее массивные тела Солнечной системы, движущиеся по эллиптическим орбитам вокруг Солнца.
    6. Планетные системы.
    7. Звезды - светящиеся газовые (плазменные) шары, подобные Солнцу: в них заключена большая часть вещества Вселенной. Образуются из газо-пылевой среды (главным образом из водорода и гелия).
    8. Галактики - гигантские до сотен млрд. звезд) звездные системы, в частности, наша Г алактика (Млечный путь), которая содержит более 100 млрд. звезд.
    9. Система галактик.
    Органическая природа (биосфера, жизнь) имеет следующие уровни (виды самоорганизации):
    1. Доклеточный уровень - дезонуклеиновые кислоты, рибонуклеиновые кислоты, белки. Последние - высокомолекулярные органические вещества, построенные из 20 аминокислот, составляют (наряду с нуклеиновыми кислотами) основу жизнедеятельности всех организмов.
    2. Клетка - элементарная живая система, основа строения и жизнедеятельности всех растений и животных.
    3. Многоклеточные организмы растительного и животного мира
    - отдельные особи или их совокупность.
    4. Популяция - совокупность особей одного вида, длительно занимающая определенное пространство и воспроизводящая себя в течение большого числа поколений.
    5. Биоценоз - совокупность растений, животных и микроорганизмов, населяющих данный участок суши или водоема.
    6. Биогеоценоз (экосистема) - однородный участок земной поверхности, единый природный комплекс, образованный живыми организмами и средой их обитания.
    По размерам материя делится на три уровня:
    1. Макромир - совокупность объектов, размерность которых соотносима с масштабом человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах, километрах, а время - в секундах, минутах, часах, годах.
    2. Микромир - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется до 10 (-8) - до 16 (-16) см, а время жизни от бесконечности до 10 (-24) сек.
    3. Мегамир - мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами (а скорость света 3000000 км/с), а время существования космических объектов - миллионами и миллиардами лет.
    Это точка зрения материализма. В отличие от материалистов идеалисты отрицают материю как объективную реальность. Для субъективных идеалистов (Беркли, Мах) материя - это «комплекс ощущений», для объективных идеалистов (Платон, Гегель) - это порождение духа, «инобытие» идеи.
    3. Движение и его основные формы. Пространство и время.
    В самом широком смысле движение в применении к материи - это «изменение вообще», оно включает в себя все происходящие в мире изменения. Представления о движении как изменении зародились уже в древней философии и развивались по двум основным линиям - материалистической и идеалистической.
    Идеалисты под движением понимают не изменения объективной реальности, а изменения чувственных представлений, идей, мыслей. Тем самым делается попытка мыслить движение без материи. В материализме подчеркивается атрибутивный характер движения по отношению к материи (его неотрывность от нее) и первичность движения материи по отношению к изменениям духа. Так, Ф.Бэкон отстаивал мысль о том, что материя полна активности и тесно связана с движением как прирожденным своим свойством.
    Движение - атрибут, неотъемлемое свойство материи, они тесно связаны и не существуют друг без друга. Однако, в истории познания имели место попытки оторвать этот атрибут от материи. Так, сторонники «энергетизма» - направления в философии и естествознании, возникшего в конце Х1Х в. - начале ХХ в. пытались все явления природы свести к видоизменениям энергии, лишенной материальной основы, т.е. оторвать движение (а энергия - общая количественная мера различных форм движения материи) от материи. Энергия при этом трактовалась как чисто духовный феномен, и эта «духовная субстанция» провозглашалась основой всего существующего.
    Данная концепция несовместима с законом сохранения превращения энергии, согласно которому энергия в природе не возникает из ничего и не исчезает; она может только переходить из одной формы в другую. А потому движение неуничтожимо и неотрывно от материи.
    Материя тесно связана с движением, а оно существует в виде конкретных своих форм. Основными из них являются: механическое, физическое, химическое, биологическое и социальное. Впервые эту классификацию предложил Ф. Энгельс, но в настоящее время она претерпела определенную конкретизацию и уточнения. Так, сегодня есть мнения о том, что самостоятельными формами движения являются геологическое, экологическое, планетарное, компьютерное и др.
    В современной науке развиваются представления о том, что механическое движение не связано с каким-либо отдельно взятым структурным уровнем организации материи. Это скорее аспект, некоторый срез, характеризующий взаимодействие нескольких таких уровней. Стало необходимым различать также квантово-механическое движение, характеризующее взаимодействие элементарных частиц и атомов, макромеханическое движение макротел.
    Существенно обогатились представления о биологической форме движения материи. Были уточнены представления о ее первичных материальных носителях. Кроме белковых молекул, в качестве молекулярного носителя жизни были выделены кислот ДНК и РНК.
    Характеризуя формы движения материи и их взаимосвязь, необходимо иметь в виду следующее:
    1. Каждая форма качественно специфична, но все они неразрывно связаны и при соответствующих условиях могут переходить вдруг в руга.
    2. Простые (низшие) формы являются основой более высоких и сложных форм.
    3. Высшие формы движения включают в себя в преобразованном виде низшие формы. Последние являются побочными по отношению к высшей форме, которая обладает своими собственными закономерностями.
    4. Недопустимо высшие формы сводить к низшим. Так, сторонники механицизма (XVI1-Х1Х вв.) пытались объяснить все явления природы и общества только с помощью законов классической механики. Механицизм - форма редукционизма, согласно которому высшие формы организации (например, биологические и социальные) могут быть сведены к низшим (например, физическим или химическим) и полностью объяснены только закономерностями последних (например, социал-дарвинизм).
    Движение как «изменение вообще» подразделяется не только по своим основным формам, но и по типам. Количество - это внешняя определенность предмета (его величина, объем, размер, темп и т.д);
    это изменение, происходящее с предметом, без коренного его преобразования (например, идущий человек). Качество - это коренное преобразование внутренней структуры предмета, его сущности (например, куколка-бабочка, тесто-хлеб). Особый тип движения - развитие. Под развитием понимается необратимое, поступательное, количественно-качественное изменение предмета или явления (например, жизнь человека, движение истории, развитие науки). Может иметь место усложнение структуры, повышение уровня организации предмета или явления, что обычно характеризуется как прогресс. Если же движение происходит в обратном направлении - от более совершенных форм к менее совершенным, то это регресс. Наукой о развитии в его полном виде является диалектика.
    Пространство и время. Пространство есть форма бытия материи, которая выражает протяженность, структуру, порядок сосуществования и рядоположенность материальных объектов.
    Время - форма бытия материи, которая выражает длительность существования материальных объектов и последовательность изменений, происходящих с объектами.
    Время и пространство тесно переплетены между собой. То, что совершается в пространстве, происходит одновременно и во времени, а то, что происходит во времени, находится в пространстве.
    В истории философии и науки сложились две основных концепции пространства и времени:
    1. Субстанциальная концепция рассматривает пространство и время как особые самостоятельные сущности, которые существуют наряду и независимо от материальных объектов. Пространство сводилось к бесконечной пустоте («ящику без стенок»), вмещающей все тела, время - к «чистой» длительности. Эта идея, в общем виде сформулированная еще Демокритом, получила свое логическое завершение в концепции абсолютного пространства и времени Ньютона, который считал, что их свойства не зависят от характера протекающих в мире материальных процессов.
    2. Реляционная концепция рассматривает пространство и время не как особые, не зависимые от материи сущности, а как формы существования вещей и без этих вещей сами по себе не существующие (Аристотель, Лейбниц, Гегель).
    Субстанциальная и реляционная концепции не связаны однозначно с материалистическим или идеалистическим толкованием мира, обе развивались на той и другой основе. Диалектико­материалистическая концепция пространства и времени была
    сформулирована в рамках реляционного подхода.
    Пространство и время как формы бытия материи имеют как общие для них свойства, так и характерные для каждой из этих форм. К их всеобщим свойствам относятся: объективность и независимость от сознания человека, их неразрывная связь друг с другом и с движущейся материей, количественная и качественная бесконечность, вечность. Пространство характеризует протяженность материи, ее структурность, взаимодействие элементов в материальных системах. Оно является непременным условием существования любого материального объекта. Пространство реального бытия трехмерно, однородно и изотропно. Однородность пространство связана с отсутствием в нем «выделенных» каким-либо образом точек. Изотропность пространства означает равноправность в нем любого из возможных направлений.
    Время характеризует материальное бытие как вечное и неуничтожимое в своей совокупности. Время одномерно (от настоящего к будущему), ассиметрично и необратимо.
    Проявление времени и пространство различно в различных формах движения, поэтому в последнее время выделяют биологическое, психологическое, социальное и другие пространства и время.
    Так, например, психологическое время связано с его психическими состояниями, установками и т.п. Время в той или иной ситуации может «замедляться» или, наоборот, «ускоряться», оно «летит» или «тянется». Это субъективное чувство времени.
    Биологическое время связано с биоритмами живых организмов, со сменой дня и ночи, со временем года и циклами солнечной активности. Считается также, что существует множество биологических пространств (например, ареалы распространения тех или иных организмов или их популяций).
    Социальное время, связанное с развитием человечества, с историей, тоже может ускорять и замедлять свой бег. Особенно это ускорение характерно для ХХ века в связи с научно-технической прогрессом. НТР буквально спрессовало социальное пространство и неимоверно ускорило бег времени, придав взрывной характер развитию общественно-экономических процессов. Планета стала маленькой и тесной для человечества как единого целого, а время перемещения из одного ее конца в другой теперь измеряется часами, что было просто немыслимо еще в прошлом столетии.
    В ХХ веке на основе открытии в естественных и точных науках был разрешен спор между этими двумя концепциями. Победила реляционная. Так, Н.Лобачевский пришел к выводу в своей неевклидовой геометрии, что свойства пространства не являются всегда и везде одинаковыми и неизменными, а они изменяются в зависимости от наиболее общих свойств материи. По теории относительности
    А.Эйнштейна пространственно-временные свойства тел зависят от скорости их движения (т. е. от показателей материи). Пространственные размеры сокращаются в направлении движения при приближении скорости тела к скорости света в вакууме (300000 км/с), а временные процессы в быстро движущихся системах замедляются. Он доказал также, что вблизи массивных тел время замедляется, как и в центре планет. Этот эффект тем заметнее, чем больше масса небесных тел.
    Таким образом, теория относительности А.Эйнштейна показала неразрывную связь между материей, пространством и временем.

    Читайте также: