Расчет условной пропускной способности регулирующего клапана. Основные технические характеристики регулирующих клапанов

Значение величины kv.

Регулирующий клапан создает в сети дополнительную потерю давления для ограничения расхода воды в требуемых пределах. Расход воды зависит от дифференциального давления на клапане:

kv – показатель расхода на клапане, ρ – плотность (для воды ρ=1,000 кг/м 3 при температуре в 4°С, а при 80°С ρ=970 кг/м 3), q – расход жидкости, м 3 /час, ∆р – дифференциальное давление, бар.

Максимальная величина k v (k vs) достигается при полностью открытом клапане. Эта величина соответствует расходу воды, выраженному в м 3 /час, для дифференциального давления равного 1 бару. Регулирующий клапан выбирают таким образом, чтобы величина k vs обеспечивала расчетный расход для данного располагаемого дифференциального давления при работе клапана в заданных условиях.

Не так просто определить необходимую для регулирующего клапана величину k vs , поскольку располагаемое дифференциальное давление на клапане зависит от многих факторов:

  • Фактического напора насоса.
  • Потери давления в трубах и на арматуре.
  • Потери давления на терминалах.

Потери давления в свою очередь зависят от точности балансировки.

При проектировании котельных установок рассчитывают теоретически правильные величины потерь давления и расхода для различных элементов системы. Однако на практике редко различные элементы обладают точно заданными характеристиками. При установке, как правило, выбирают насосы, регулирующие клапаны и терминалы по стандартным характеристикам.

Регулирующие клапаны, например, выпускают с величинами k vs , возрастающими в геометрической пропорции, называемыми рядами Рейнарда:

k vs: 1.0 1.6 2.5 4.0 6.3 10 16......

Каждая величина приблизительно на 60% больше предыдущей.

Нетипично, чтобы регулирующий клапан обеспечивал точно расчетную потерю давления для заданного расхода. Если, например, регулирующий клапан должен создавать потерю давления равную 10 кПа при заданном расходе, то на практике может оказаться, что клапан незначительно большей величиной k vs создаст потерю давления, равную лишь 4 кПа, а клапан с незначительно меньшей величиной k vs обеспечит потерю давления в 26 кПа для расчетной величины расхода.

∆р (бар), q (м 3 /ч)

∆р (кПа), q (л/сек)

∆р (мм ВС), q (л/ч)

∆р (кПа), q (л/ч)

q = 10 k v √∆p

q = 100 k v √∆p

∆p = (36 q/k v)2

∆p = (0.1 q/k v)2

∆p = (0.01 q/k v)2

kv = 36 q/√∆p

k v = 0.1 q/√∆p

kv = 0.01 q/√∆p

Некоторые формулы содержат расход, k v и ∆р (ρ = 1,000 кг/м 3)

Кроме того, насосы и терминалы, зачастую, превышают размер по той же причине. Это означает, что регулирующие клапаны работают почти закрытыми, в результате регулировка не может быть устойчивой. Возможно так же, что периодически эти клапаны максимально открываются, при запуске обязательно, что приводит к чрезмерному расходу в данной системе и недостаточному расходу в других. В результате следует задать вопрос:

Что делать, если регулирующий клапан избыточного размера?

Понятно, что, как правило, невозможно точно подобрать необходимый регулирующий клапан.

Рассмотрим случай с калорифером на 2000 Вт, предназначенной для падения температуры на 20 К. Потеря давления составит 6 кПа для расчетного расхода 2000х0.86/20=86 л/ч. Если располагаемое дифференциальное давление равно 32 кПа и потеря давления в трубах и на арматуре составляет 4 кПа, на регулирующем клапане должна быть разность 32 - 6 - 4 = 22 кПа.

Требуемая величина k vs составит 0,183.

Если минимальная располагаемая величина k vs равна 0.25, например, расход вместо желаемых 86 л/час составит 104 л/час, превышение на 21%.

В системах с переменным расходом величина дифференциального давления на терминалах переменная, поскольку потеря давления в трубах зависит от расхода. Регулирующие клапаны выбирают для расчетных условий. При низких нагрузках максимальный потенциальный расход на всех установках повышен и не возникает опасность чрезмерно низкого расхода на одном отдельном терминале. Если при расчетных условиях требуется максимальная нагрузка, очень важно избежать избыточного расхода.

A . Ограничение расхода с помощью балансировочного клапана, установленного последовательно.

Если в расчетных условиях расход на открытом регулирующем клапане выше требуемой величины, для ограничения этого расхода можно последовательно установить балансировочный клапан. Это не изменит действительный коэффициент управления регулирующего клапана, а даже улучшит его характеристику (см. рисунок на странице 51). Балансировочный клапан также является инструментом диагностики и отсечным клапаном.


B . Снижение максимального подъема клапана.

Для компенсации избыточного размера регулирующего клапана можно ограничить степень открытия клапана. Это решение можно рассмотреть для клапанов с равными процентными характеристиками, поскольку можно значительно снизить величину k v , соответственно уменьшив степень максимального открытия клапана. Если степень открытия клапана снизить на 20%, максимальная величина k v снизится на 50%.

На практике балансировку производят с помощью последовательно установленных балансировочных клапанов при полностью открытом регулирующем клапане. Балансировочные клапаны настраивают в каждом контуре, чтобы при расчетной величине расхода потеря давления составила 3 кПа.

Степень подъема регулирующего клапана ограничивают при получении на балансировочном клапане 3 кПа. Поскольку установка сбалансирована и остается сбалансированной, то требуемый расход фактически получают в расчетных условиях.

C . Снижение расхода с помощью клапана, регулирующего ∆р, в группе.

Дифференциальное давление на регулирующем клапане может быть стабилизировано, как показано на рисунке ниже.


Величина настройки клапана STAP, регулирующего перепад давления, выбирается таким образом, чтобы получить требуемый расход для полностью открытого регулирующего клапана. В этом случае регулирующий клапан должен быть точно по размеру, а его коэффициент управления - близок к единице.

Несколько эмпирических правил

Если двухходовые регулирующие клапаны используют на терминалах, большая часть регулирующих клапанов будет закрыта или почти закрыта при низких нагрузках. Поскольку мал расход воды, потеря давления на трубах и арматуре будет незначительной. Весь напор насоса приходится на регулирующий клапан, который должен быть способен противостоять ему. Такое увеличение дифференциального давления затрудняет регулировку при малом расходе, поскольку фактически коэффициент управления β" значительно уменьшается.

Предположим, что регулирующий клапан спроектирован для потери давления, составляющей 4% напора насоса. Если система работает с низким расходом, дифференциальное давление в этом случае умножают на 25. Для одинаковой величины открытия клапана расход затем умножают на 5 (√25 = 5). Клапан принудительно работает в почти закрытом положении. Это может привести к возникновению шума и колебанию регулированной величины (в этих новых рабочих условиях параметры клапана завышаются в пять раз).

Именно поэтому некоторые авторы рекомендуют проектировать систему таким образом, чтобы расчетное падение давления на регулирующих клапанах составляло не мене 25% напора насоса. В этом случае при низких нагрузках превышение расхода на регулирующих клапанах не будет превышать коэффициент 2.

Всегда очень трудно найти регулирующий клапан, способный выдержать столь высокое дифференциальное давление, не создавая при этом шумов. Также трудно найти достаточно малые клапаны, отвечающие вышеуказанным критериям, при использовании терминалов низкой мощности. Кроме того, необходимо ограничить изменения дифференциального давления в системе, например, используя вторичные насосы.

Если принять во внимание указанную дополнительную концепцию, калибровка двухходового регулирующего клапана должна удовлетворять следующим условиям:

  • При работе системы в нормальных условиях расход на полностью открытом клапане должен быть расчетным. Если расход выше указанного, балансировочный клапан, установленный последовательно, должен ограничить расход. Тогда для контроллера типа PI коэффициент управления равный 0.30 окажется приемлемым. Если значения параметров регулирования, ниже, регулирующий клапан следует заменить клапаном меньшего размера.
  • Напор насоса должен быть таким, чтобы потери давления на двухходовых регулирующих клапанах составляли не менее 25% напора насоса.

Для контроллеров вкл-выкл, концепция параметров регулирования не имеет значения, поскольку регулирующий клапан либо открыт, либо закрыт. Поэтому его характеристика не имеет большого значения. В этом случае расход незначительно ограничен последовательно установленным балансировочным клапаном.

), внутри которого находится сильфонная ёмкость, заполненная рабочим телом (газ, жидкость, твёрдое вещество) с высоким коэффициентом объемного расширения. При изменении температуры воздуха, окружающего сильфон, рабочее тело расширяется или сжимается, деформируя сильфон, который, в свою очередь, воздействует на шток клапана, открывая или закрывая его (рис. 1 ).

Рис. 1. Схема работы термостатического клапана

Основной гидравлической характеристикой термостатического клапана является пропускная способность Kv . Это расход воды, который способен пропустить через себя клапан при перепаде давления на нем в 1 бар. Индекс « V » обозначает, что коэффициент отнесен к часовому объемному расходу и измеряется в м 3 /ч. Зная пропускную способность клапана и расход воды через него, можно определить потерю давления на клапане по формуле:

ΔP к = (V / K v) 2 · 100, кПа.

Регулирующие клапаны, в зависимости от степени открытия, имеют разную пропускную способность. Пропускная способность полностью открытого клапана обозначается Kvs . Потери давления на термостатическом радиаторном клапане при гидравлических расчетах, как правило, определяются не при полном открытии, а для определенной зоны пропорциональности – X p.

X p – это зона работы термостатического клапана в интервале от температуры воздуха при полном закрытии (точка S на графике регулирования) до установленного пользователем значения допустимого отклонения температуры. Например, если коэффициент Kv дан при X p = S – 2, и термоэлемент установлен в такое положение, что при температуре воздуха 22 ˚С клапан будет полностью закрыт, то этот коэффициент будет соответствовать положению клапана при температуре окружающего воздуха 20 ˚С.

Отсюда можно сделать вывод, что температура воздуха в помещении будет колебаться в пределах от 20 до 22 ˚С. Показатель Xp влияет на точность поддержания температуры. При Xp = (S – 1) диапазон поддержания температуры внутреннего воздуха будет в пределах 1 ˚С. При Xp = (S – 2) – диапазон 2 ˚С. Зона X p = (S – max) характеризует работу клапана без термочувствительного элемента.

В соответствии с ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях», в холодный период года в жилой комнате оптимальные температуры лежат в пределах от 20 до 22 ˚С, то есть, диапазон поддержания температуры в жилых помещениях зданий должен быть 2 ˚С. Таким образом, для расчёта жилых зданий требуется выбор значений пропускной способности при Xp = (S – 2).

Рис. 2. Термостатический клапан VT.031

На рис. 3 показаны результаты стендового испытания (рис. 2 ) с термостатическим элементом VТ.5000 с установленным значением «3». Точка S на графике это теоретическая точка закрытия клапана. Это температура, при которой клапан имеет настолько маленький расход, что его можно считать, практически, закрытым.


Рис. 3. График закрытия клапана VT.031 с термоэлементом VT.5000 (поз. 3) при перепаде давлений 10 кПа

Как видно на графике, клапан закрывается при температуре 22 ˚С. При понижении температуры воздуха, пропускная способность клапана увеличивается. На графике показаны значения расхода воды через клапан при температуре 21 (S – 1) и 22 (S – 2) ˚С.

В табл. 1 представлены паспортные значения пропускной способности термостатического клапана VТ.031 при различных Xp .

Таблица 1. Паспортные значения пропускной способности клапана VT.031

Клапаны испытываются на специальном стенде, показанном на рис. 4 . В ходе испытаний поддерживается постоянный перепад давления на клапане равный 10 кПа. Температура воздуха имитируется при помощи термостатической ванны с водой, в которую погружается термоголовка. Температура воды в ванне постепенно повышается, при этом фиксируются расходы воды через клапан до полного закрытия.


Рис. 4. Стендовые испытания клапана VT.032 на пропускную способность по ГОСТу 30815-2002

Кроме значений пропускной способности термостатические клапаны характеризуются таким показателем, как максимальный перепад давления. Это такой перепад давления на клапане, при котором он сохраняет паспортные регулировочные характеристики, не создает шум, а также при котором все элементы клапана не будут подвержены преждевременному износу.

В зависимости от конструкции, термостатические клапаны имеют различные значения максимального перепада давления. У большинства представленных на рынке радиаторных термостатических клапанов эта характеристика составляет 20 кПа. При этом, согласно п. 5.2.4 ГОСТ 30815-2002, температура, при которой клапан закроется, при максимальном перепаде давления, не должна отличаться от температуры закрытия при перепаде давления 10 кПа более чем на 1 ˚С.

Из графика на рис. 5 видно, что клапан VТ.031 при перепаде давления 10 кПа и уставке термоэлемента «3» закрывается при 22 ˚С.


Рис. 5. Графики закрытия клапана VT.031 с термоэлементом VT.5000 при перепаде давления 10 кПа (синяя линяя) и 100 кПа (красная линия)

При перепаде давления 100 кПа клапан закрывается при температуре 22,8˚С. Влияние дифференциального давления составляет 0,8 ˚С. Таким образом, в реальных условиях эксплуатации такого клапана при перепадах давления от 0 до 100 кПа, при настройке термоэлемента на цифру «3», диапазон температур закрытия клапана составит от 22 до 23 ˚С.

Если в реальных условиях эксплуатации перепад давления на клапане вырастет больше максимального, то клапан может создавать недопустимый шум, а также его характеристики будут существенно отличаться от паспортных.

Из-за чего же происходит увеличение перепада давления на термостатическом клапане во время эксплуатации? Дело в том, что в современных двухтрубных системах отопления расход теплоносителя в системе постоянно меняется, в зависимости от текущего теплопотребления. Какие-то терморегуляторы открываются, какие-то – закрываются. Изменение расходов по участкам приводит к изменению распределения давлений.

Для примера рассмотрим простейшую схему (рис. 6 ) с двумя радиаторами. Перед каждым радиатором установлен термостатический клапан. На общей линии находится регулирующий вентиль.


Рис. 6. Расчетная схема с двумя радиаторами

Допустим, что потери давления на каждом термостатическом клапане составляет 10 кПа, потери давления на вентиле – 90 кПа, общий расход теплоносителя – 0,2 м 3 /ч и расход теплоносителя через каждый радиатор – 0,1 м 3 /ч. Потерями давления в трубопроводах пренебрегаем. Полные потери давления в этой системе составляют 100 кПа, и они поддерживаются на постоянном уровне. Гидравлику такой системы можно представить следующей системой уравнений:

где V о – общий расход, м 3 /ч, V р – расход через радиаторы, м 3 /ч, kv в – пропускная способность вентиля, м 3 /ч, kv т.к. – пропускная способность термостатических клапанов, м 3 /ч, ΔP в – перепад давления на вентиле, Па, ΔP т.к – перепад давления на термостатическом клапане, Па.


Рис. 7. Расчетная схема с отключенным радиатором

Предположим, что в помещении, где установлен верхний радиатор, температура увеличилась, и термостатический клапан полностью перекрыл поток теплоносителя через него (рис. 7 ). В этом случае весь расход будет идти только через нижний радиатор. Перепад давления в системе выразится следующей формулой:

где V о ′ – общий расход в системе после отключения одного термостатического клапана, м 3 /ч, V p ′ – расход теплоносителя через радиатор, в данном случае он будет равен общему расходу; м 3 /ч.

Если принять во внимание, что перепад давления поддерживается постоянным (равным 100 кПа), то можно определить расход, который установится в системе после отключения одного из радиаторов.


Потери давления на вентиле снизятся, так как общий расход через вентиль уменьшился с 0,2 до 0,17 м 3 /ч. Потери давления на термостатическом клапане наоборот вырастут, потому что расход через него вырос с 0,1 до 0,17 м 3 /ч. Потери давления на вентиле и термостатическом клапане составят:

Из приведенных расчетов можно сделать вывод, что перепад давления на термостатическом клапане нижнего радиатора при открытии и закрытии термостатического клапана верхнего радиатора будет варьироваться от 10 до 30,8 кПа.

Но что будет, если оба клапана перекроют движение теплоносителя? В этом случае потери давления на вентиле будут нулевыми, так как движения теплоносителя через него не будет. Следовательно, разница давлений до золотника/после золотника в каждом радиаторном клапане будет равна располагаемому напору и составит 100 кПа.

Если используются клапаны с допустимым перепадом давлений меньше этой величины, то клапан может открыться, несмотря на отсутствии реальной потребности в этом. Поэтому перепад давлений на регулируемом участке сети должен быть ниже максимально допустимого перепада давления на каждом терморегуляторе.

Предположим, что вместо двух радиаторов в системе установлено некое множество радиаторов. Если в какой-то момент все терморегуляторы, кроме одного, закроются, то потери давления на вентиле будут стремиться к 0, а перепад давления на открытом термостатическом клапане будет стремиться к располагаемому напору, т.е., для нашего примера, к 100 кПа.

В этом случае расход теплоносителя через открытый радиатор будет стремиться к значению:

То есть в самом неблагоприятном случае (если из множества радиаторов открытым останется только один) расход на открытом радиаторе вырастет более чем в три раза.

Насколько же измениться мощность отопительного прибора при таком увеличении расхода? Теплоотдача Q секционного радиатора считается по формуле:

где Q н – номинальная мощность отопительного прибора, Вт, Δt ср – средняя температура отопительного прибора, ˚С, t в – температура внутреннего воздуха, ˚С, V пр – расход теплоносителя через отопительный прибор, n – коэффициент зависимости теплоотдачи от средней температуры прибора, p – коэффициент зависимости теплоотдачи от расхода теплоносителя.

Предположим, что отопительный прибор имеет номинальную теплоотдачу Q н = 2900 Вт, расчётные параметры теплоносителя 90/70 ˚С. Коэффициенты для радиатора принимаются: n = 0,3, p = 0,015. В расчётный период при расходе 0,1 м 3 /ч такой отопи- тельный прибор будет иметь мощность:


Чтобы узнать мощность прибора при Vр’’=0,316 м³⁄ч необходимо решить систему уравнений:


Методом последовательных приближений получаем решение этой системы уравнений:


Отсюда можно сделать вывод, что в системе отопления при самых неблагоприятных условиях, когда все отопительные приборы, кроме одного, на участке перекрыты, перепад давления на термостатическом клапане может вырасти до располагаемого напора. В приведенном примере при располагаемом напоре 100 кПа расход увеличится в три раза, при этом мощность прибора возрастёт всего на 17 %.

Повышение мощности отопительного прибора приведёт к увеличению температуры воздуха в отапливаемом помещении, что, в свою очередь, вызовет закрытие термостатического клапана. Таким образом, колебание перепада давления на термостатическом клапане во время эксплуатации в пределах паспортного максимального значения перепада является допустимым, и не приведет к нарушению в работе системы.

В соответствии с ГОСТ 30815-2002 максимальный перепад давления на термостатическом клапане определяется производителем из соблюдения требований бесшумности и сохранения регулировочных характеристик. Однако, изготовление клапана с широким диапазоном допустимых перепадов давления сопряжено с определенными конструктивными трудностями. Особые требования так же предъявляются к точности изготовления деталей клапана.

Большинство производителей выпускают клапаны с максимальным перепадом давления 20 кПа.

Исключение составляют клапаны VALTEC VT.031 и VT.032 () с максимальным перепадом давления 100 кПа (рис. 8 ) и клапаны фирмы Giacomini серии R401–403 с максимальным перепадом давления 140 кПа (рис. 9 ).


Рис. 8. Технические характеристики радиаторных клапанов VT.031, VT.032


Рис. 9. Фрагмент технического описания термостатического клапана Giacomin R403


Рис. 10. Фрагмент технического описания термостатического клапана

При изучении технической документации необходимо быть внимательным, так как некоторые производители переняли практику банкиров - вставлять мелкий текст в примечаниях.

На рис. 10 представлен фрагмент из технического описания одного из типов термостатических клапанов. В основной графе указано значение максимального перепада давления 0,6 бара (60 кПа). Однако в сноске есть примечание, что действительный диапазон работы клапана ограничен всего лишь 0,2 барами (20 кПа).

Рис. 11. Золотник термостатического клапана с осевым креплением уплотнителя

Ограничение вызвано шумом, возникающим в клапане при высоких перепадах давления. Как правило, это касается клапанов с устаревшей конструкцией золотника, в котором уплотнительная резинка просто крепится по центру заклепкой или болтом (рис. 11 ).

При больших перепадах давления уплотнитель такого клапана начинает вибрировать из-за неполного прилегания к золотниковой тарелке, вызывая акустические волны (шум).

Повышенный допустимый перепад давления в клапанах VALTEC и Giacomini достигнут за счёт принципиально иной конструкции золотниковых узлов. В частности, у клапанов VT.031 использован латунный золотниковый плунжер, «футерованный» эластомером EPDM (рис. 12 ).

Рис. 12. Вид золотникового узла клапана VT.031

Сейчас разработка термостатических клапанов с широким диапазоном рабочих перепадов давления является одной из приоритетных задач специалистов многих компаний.

    Исходя из изложенного, можно дать следующие рекомендации по проектированию систем отопления с термостатическими клапанами:
  1. Коэффициент пропускной способности термостатического клапана рекомендуется определять, исходя из допустимого диапазона температур обслуживаемого помещения. Например, для жилых комнат по ГОСТ 30494-2011 оптимальные пара- метры внутреннего воздуха находятся диапазоне 20–22 ˚С. Значение Kv в этом случае принимается при Xp = S – 2.
    В помещениях категории 3а (помещения с массовым пребыванием людей, в которых люди находятся преимущественно в положении сидя без уличной одежды) оптимальный диапазон температур 20–21 ˚С. Для этих помещений значение Kv рекомендуется принимать при Xp = S – 1.
  2. На циркуляционных кольцах системы отопления должны быть установлены устройства (перепускные клапаны либо регуляторы перепада давления), ограничивающие максимальный перепад давления таким образом, чтобы перепад давления на клапане не превысил предельного паспортного значения.

Приведем несколько примеров подбора и установки устройств, для ограничения перепада давления на участке с термостатическими клапанами.

Пример 1. Расчётные потери давления в квартирной системе отопления (рис. 13 ), включая термостатические клапаны, составляют 15 кПа. Максимальный перепад давления на термостатических клапанах равен 20 кПа (0,2 бара). Потери давления на коллекторе, включая потери на теплосчётчиках, балансировочных клапанах и прочей арматуре примем 8 кПа. В итоге перепад давления до коллектора составляет 23 кПа.

Если установить регулятор перепада давления или перепускной клапан до коллектора, то в случае перекрытия всех термостатических клапанов в данной ветке, перепад на них составит 23 кПа, что превышает паспортное значение (20 кПа). Таким образом, в данной системе регулятор перепада давления или перепускной клапан должен устанавливаться на каждом выходе после коллектора, и должен быть настроен на перепад 15 кПа.


Рис. 13. Схема к примеру 1

Пример. 2 . Если принять не тупиковую, а лучевую систему поквартирного отопления (рис. 14 ), то потери давления в ней будут значительно ниже. В приведенном примере коллекторно-лучевой системы потери в каждой радиаторной петле составляют 4 кПа. Потери давления на квартирном коллекторе примем 3 кПа, а потери давления на этажном коллекторе – 8 кПа.

В этом случае регулятор перепада давления можно расположить перед этажным коллектором и настроить его на перепад 15 кПа. Такая схема позволяет сократить количество регуляторов перепада давления и существенно удешевить систему.


Рис. 14. Схема к примеру 2

Пример 3. В данном варианте используются с максимальным перепадом давления 100 кПа (рис. 15 ). Так же как и в первом примере, примем, что потери давления в квартирной системе отопления составляют 15 кПа. Потери давления на квартирном узле ввода (квартирной станции) 7 кПа. Перед квартирной станцией перепад давления составит 23 кПа. В десятиэтажном здании общую длину пары стояков системы отопления можно принять порядка 80 м (сумма подающего и обратного трубопроводов).

Рис. 15. Схема к примеру

При средних линейных потерях давления по стояку 300 Па/м, общие потери давления в стояках составят 24 кПа. Отсюда следует, что перепад давления у основания стояков составит 47 кПа, что меньше максимально допустимого перепада давления на клапане.

Если установить регулятор на перепад давления на стояк и настроить его на давление 47 кПа, то даже когда все радиаторные клапаны, подключенные к этому стояку, закроются, перепад давления на них будет ниже 100 кПа.

Таким образом, можно существенно снизить стоимость системы отопления, установив вместо десяти регуляторов перепада давления на каждом этаже, один регулятор у основания стояков.

Номинальный диаметр арматуры. Данное значение указывает диаметр арматуры в свету и имеет название диаметра условного прохода. Один из основных параметров регулирующих клапанов . От этого параметра напрямую зависит значение kvs арматуры. Чаще всего условный диаметр меньше диаметра трубопровода, благодаря чему возможна экономия денежных стредств, однако при расчете регулирующего клапана следует помнить о потреях на конфузоре и диффузоре, которые имеют место до и после клапана соответственно. В РФ, а также в странах бывшего СССР в настоящее время можно встретить также обозначение номинального диаметра как Ду (условный диаметр). Условный диаметр обозначают буквами DN или Ду с добавлением величины условного прохода в миллиметрах: например, условный проход диаметром 150 мм обозначают DN 150 (Ду150).

Регулирующее отношение - это отношение между наибольшим коэффициентом расхода и наименьшим коэффициентом расхода. Практически это отношение между наибольшим и наименьшим регулируемыми расходами (иначе в одинаковых условиях).

Максимальная неплотность в закрытом состоянии относится также к характерным параметрам арматуры. У регулирующих клапанов данное значение нередко выражается в процентах максимального расхода (Kvs, Avs, Cvs), причем стандартом IEC 534-4-1982 четко определенны условия испытаний. Если значение неплотности указывается, например, как 0,01% Kvs, это значит, что через данный вентиль в закрытом состоянии протечет максимально одна сотая процента Kvs (т. е. 0,01 Kvs) испытательной жидкости при условиях испытания. Если это значение играет важную роль в эксплуатации оборудования, следует обратиться за информацией об условиях его испытания к изготовителю или затребовать более высокую плотность, если позволяют технические возможности данного типа арматуры.


Специфика расчета двухходового клапана

Дано:

среда - вода, 115C,

∆pдоступ = 40 кПа (0,4 бар), ∆pтрубопр = 7 кПа (0,07 бар),

∆pтеплообм = 15 кПа (0,15 бар), условный расход Qном = 3,5 м3/ч,

минимальный расход Qмин = 0,4 м3/ч

Расчет:

∆pдоступ = ∆pвентил + ∆pтрубопр + ∆pтеплообм =
∆pвентил = ∆pдоступ - ∆pтрубопр - ∆pтеплообм = 40-7-15 = 18 кПа (0,18 бар)

Предохранительный припуск на рабочий допуск (при условии, что расход Q не был завышен):

Kvs = (1,1 до 1,3). Kv = (1,1 до 1,3) x 8,25 = 9,1 до 10,7 м3/ч
Из серийно производимого ряда Kv величин выберем ближайшую Kvs величину, т.е. Kvs = 10 м3/ч. Этой величине соответствует диаметр в свету DN 25. Если выбираем клапан с резьбовым присоединением PN 16 из серого чугуна получим номер (артикул заказа) типа:
RV 111 R 2331 16/150-25/T
и соответствующий привод.

Определение гидравлической потери подобранного и рассчитанного регулирующего клапана при полном открытии и данном расходе.

Таким образом вычисленная действительная гидравлическая потеря регулирующей арматуры должна быть отражена в гидравлическом расчете сети.

причем a должно равняться как минимум 0,3. Проверка установила: подбор клапана соответствует условиям.

Предупреждение: Расчет авторитета двухходового регулирующего клапана осуществляется относительно перепада давлений на вентиле в закрытом состоянии, т.е. имеющегося давления ветви ∆pдоступ при нулевом расходе, и никогда относительно давления насоса ∆pнасоса, так как из-за влияния потерь давления в трубопроводе сети до места присоединения регулируемой ветви. В таком случае для удобства предполагаем

Контроль регулирующего отношения

Осуществим такой же расчет для минимального расхода Qмин = 0,4 м3/ч. Минимальному расходу соответствуют перепады давления , , .

Требуемое регулирующее отношение

должно быть меньше, чем задаваемое регулирующее отношение вентиля r = 50. Расчет данным условиям удовлетворяет.

Типичная схема компоновки регулирующей петли с применением двухходового регулирующего клапана .


Специфика расчета трехходового смесительного клапана

Дано:

среда - вода, 90C,

статическое давление в точке присоединения 600 кПа (6 бар),

∆pнасоса2 = 35 кПа (0,35 бар), ∆pтрубопр = 10 кПа (0,1 бар),

∆pтеплообм = 20 кПа (0,2), номинальный расход Qном = 12 м3/ч

Расчет:



Предохранительный припуск на рабочий допуск (при условии, что расход Q не был завышен):
Kvs = (1,1-1,3)xKv = (1,1-1,3)x53,67 = 59,1 до 69,8 м3/ч
Из серийно производимого ряда значений Kv выберем ближайшее Kvs значение, т.е. Kvs = 63 м3/ч. Этому значению соответствует диаметр в свету DN65. Если выберем фланцевый клапан из чугуна с шаровидным графитом, получим тип №
RV 113 M 6331 -16/150-65

Затем мы выбираем подходящий привод в соответствии с требованиями.

Определение действительной гидравлической потери выбранного клапана при полном открытии

Таким образом, вычисленная действительная гидравлическая потеря регулирующей арматуры должна быть отражена в гидравлическом расчете сети.

Предупреждение: у трехходовых клапанов самым главным условием безошибочного функционирования является соблюдение минимальной разности давлений
на штуцерах A и B. Трехходовые клапаны в состоянии справиться и со значительным дифференциальным давлением между штуцерами A и B, но за счет деформации регулирующей характеристики, и тем самым ухудшением регулирующей способности. Поэтому при малейшем сомнении относительно разности давлений между обоими штуцерами (например, в случае, если трехходовой клапан без напорного отделения напрямую присоединен к первичной сети), рекомендуем для качественного регулирования использовать двухходовой клапан в соединении с жестким замыканием.

Типичная схема компоновки регулирующей линии с использованием трехходового смесительного клапана .


После выбора способа управления и типа регулирующего клапана: двухходового или трехходового, его необходимо правильно рассчитать и подобрать. Расчет и подбор регулирующего клапана зависит от выбранного способа регулирования. При двухпозиционном регулировании (с электротермическим приводом) подбирают регулирующий клапан с минимальным диаметром при заданном расходе воды так, чтобы перепад давления на нем не превысил максимальные потери 25 кПа при охлаждении и 15 кПа при отоплении. Эти значения могут уточняться фирмой-производителем. Подбор осуществляют по номограмме для соответствующего терморегулирующего клапана по данным фирмы-производителя, пример такой номограммы для трехходового регулирующего клапана фирмы Cazzaniga представлен на рис. 4.16. На диаграмму нанесены также пунктирные линии для определения потерь давления на байпассной линии. Пример расчета: Дано: Расход воды через теплообменник фэнкойла (7=0,47 м 3 /час. Потери давления на теплообменнике 14,4 кПа. Принимаем клапан диаметром 15мм (1/2") с K v =2 м 3 /час. Потери давления на прямом ходе АР=4,7 кПа, на байпасе - АР=8,0 кПа. Для регулирующих клапанов с плавным регулированием (с помощью пульта и термостата или с сервоприводом) от правильно подобранного клапана зависит качество регулирования, определяемое соответствием хода затвора регулирующего клапана а определенному требуемому расходу воды через клапан. При подборе регулирующего клапана с плавным регулированием используют общие принципы независимо от того, где клапан установлен: на теплообменнике фэнкойла, на воздухоохладителе или воздухонагревателе центрального кондиционера.

Работа регулирующего клапана характеризуется величиной пропускной способности K v , м 3 /час, и пропускной характеристикой. Коэффициент условной пропускной способности равен расходу жидкости через клапан в м 3 /час с плотностью 1000 кг/м 3 , при перепаде давлений на нем 0,1 МПа (1 бар). Условный коэффициент пропускной способности определяется по формуле:

(3) где q - объемный расход жидкости через клапан, м 3 /час; Ψ - коэффициент, учитывающий влияние вязкости жидкости, определяемый в зависимости от числа Рейнольдса:

(4) по графику 4.17;
р - плотность жидкости, кг/м 3 ;
v - кинематическая вязкость жидкости, изменяющаяся в зависимости от температуры и концентрации растворенного вещества для водных растворов, см 2 /с; d - диаметр условного прохода клапана, мм; АР - потери давления на регулирующем клапане при максимальном расходе жидкости через него, МПа.

Пропускная характеристика - зависимость относительной пропускной способности от относительного перемещения затвора клапана , где K v , K vy - коэффициенты пропускной способности действительный и условный, м 3 /час, S, S y - действительный и условный ход затвора, мм. Иногда она называется идеальной характеристикой регулирующего клапана. Чаще регулирующие клапаны выпускаются с линейной пропускной характеристикой: (5)

Реже равнопроцентнои:


Реальная картина изменения расхода жидкости через клапан отличается от идеальной и характеризуется рабочей характеристикой клапана, которая выражает зависимость относительного расхода жидкости от хода затвора. На нее оказывают влияние параметры регулируемого участка. Под регулируемым участком понимается участок сети, включающий технологический элемент регулирования (теплообменник фэнкойла, воздухоохладитель, воздухонагреватель), трубопроводы, арматуру, регулирующий клапан, перепад давления на котором остается постоянным в процессе регулирования или колеблется в относительно малых пределах /10%. Перепад давления на регулируемом участке складывается из перепада давления на регулирующем клапане и перепада давления на остальных элементах технологической сети. Схема регулируемого участка и распределение давлений при установке двухходового клапана показана на рис.4.12, при установке трехходового клапана на рис. 4.11. Соотношение перепада давления на клапане и перепада давлений на регулируемом участке оказывает существенное влияние на вид расходной характеристики, эта величина в литературе зарубежной и отечественной называется по-разному: коэффициент управления, относительное сопротивление клапана.

АР Обозначим отношение -- = п Можно построить несколько рабочих характеристик сети в зависимости от отношения п, пример такого построения приведен на рис. 4.18 а для регулирующего клапана с линейной пропускной характеристикой, на рис. 4.18 б для регулирующего клапана с равнопроцентной (логарифмической) пропускной характеристикой. При закрытии регулирующего клапана фактический расход жидкости через клапан оказывается больше, чем теоретический, и это отклонение тем больше, чем больше значение относительного сопротивления клапана Идеальная характеристика соответствует п=1, когда перепад давления в сети бесконечно мал, в этом случае расходная и идеальная характеристика совпадают. Наименьшее отклонение от идеального вида рабочие расходные характеристики имеют при п>0.5. Таким образом, перепад давления на регулирующем клапане должен быть больше или равен половине от общего перепада давления на регулируемом участке, или больше или равен перепаду давления на элементах технологической сети:

Правильно подобранным считается такой клапан, который полностью открыт при максимальном объеме протекающей воды и для которого выполняются эти соотношения. Водяной регулирующий клапан, поставленный без расчета, можно определить визуально на системе после ее монтажа. Сечение такого клапана обычно совпадает с сечением трубопровода на регулируемом участке (регулирующий клапан на воздухоохладителе или воздухонагревателе центрального кондиционера). Правильно выбранный клапан имеет сечение меньше, чем сечение трубопровода.-


Рис. 4.18. Графики рабочих расходных характеристик регулирующих клапанов с линейной (а) и равнопроцентной (б) пропускной характеристикой

Подбор регулирующего клапана осуществляют по коэффициенту пропускной способности с помощью номограммы для регулирующего клапана соответствующей фирмы-производителя. Пример такой номограммы для седельного трехходового регулирующего клапана VRG3 фирмы Danfoss приведен на рис. 4.19.

Пример расчета. Дано: Нагрузка по холоду на фэнкойл Q x = 0,85 кВт. Массовый расход воды через теплообменник фэнкойла

где Qx - нагрузка по холоду, кВт. Δt - перепад температур холодоносителя на входе и выходе из фэнкойла принимаем 5°С.

Объемный расход воды q = G/p = 146,2/1000 = 0,146 м 3 /час Перепад давления в теплообменнике определяем по таблице для фэнкойла Delonghi FC10

Подбираем трехходовой регулирующий клапан по номограмме так, чтобы перепад давления на регулирующем клапане был больше перепада давления в теплообменнике с учетом запаса на потери в трубопроводах, запорной арматуре: при G = 146,2 кг/час по номограмме на рис.4.19. определяем Кvs=0,4 м3/час регулирующего клапана диаметром R 1/2"(15 мм) и потери давления на клапане А р =15 кПа. При Kvs =0,63 м 3 /час потери давления на клапане Ар =5,8 кПа и соотношение давления будет меньше 1. Поэтому принимаем клапан с K vs =0,4.


Рис. 4.19. Номограмма для подбора трехходового регулирующего клапана VRG3 фирмы Danfoss (плавное регулирование)

Читайте также: