Как отложить вектор в трехмерном пространстве. Векторы. Сложение и вычитание векторов

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Понятие вектора

Прежде чем Вы узнаете всё о векторах и операциях над ними, настройтесь на решение несложной задачи. Есть вектор Вашей предприимчивости и вектор Ваших инновационных способностей. Вектор предприимчивости ведёт Вас к Цели 1, а вектор инновационных способностей - к Цели 2. Правила игры таковы, что Вы не можете двигаться сразу по направлениям двух этих векторов и достигнуть сразу двух целей. Векторы взаимодействуют, или, если говорить математическим языком, над векторами производится некоторая операция. Результатом этой операции становится вектор "Результат", который приводит Вас к Цели 3.

А теперь скажите: результатом какой операции над векторами "Предприимчивость" и "Инновационные способности" является вектор "Результат"? Если не можете сказать сразу, не унывайте. По мере изучения этого урока Вы сможете ответить на этот вопрос.

Как мы уже увидели выше, вектор обязательно идёт от некоторой точки A по прямой к некоторой точке B . Следовательно, каждый вектор имеет не только числовое значение - длину, но также физическое и геометрическое - направленность. Из этого выводится первое, самое простое определение вектора. Итак, вектор - это направленный отрезок, идущий от точки A к точке B . Обозначается он так: .


А чтобы приступить к различным операциям с векторами , нам нужно познакомиться с ещё одним определением вектора.

Вектор - это вид представления точки, до которой требуется добраться из некоторой начальной точки. Например, трёхмерный вектор, как правило, записывается в виде (х, y, z ) . Говоря совсем просто, эти числа означают, как далеко требуется пройти в трёх различных направлениях, чтобы добраться до точки.

Пусть дан вектор. При этом x = 3 (правая рука указывает направо), y = 1 (левая рука указывает вперёд), z = 5 (под точкой стоит лестница, ведущая вверх). По этим данным вы найдёте точку, проходя 3 метра в направлении, указываемом правой рукой, затем 1 метр в направлении, указываемом левой рукой, а далее Вас ждёт лестница и, поднимаясь на 5 метров, Вы, наконец, окажетесь в конечной точке.

Все остальные термины - это уточнения представленного выше объяснения, необходимые для различных операций над векторами, то есть, решения практических задач. Пройдёмся по этим более строгим определениям, останавливаясь на типичных задачах на векторы.

Физическими примерами векторных величин могут служить смещение материальной точки, двигающейся в пространстве, скорость и ускорение этой точки, а также действующая на неё сила.

Геометрический вектор представлен в двумерном и трёхмерном пространстве в виде направленного отрезка . Это отрезок, у которого различают начало и конец.

Если A - начало вектора, а B - его конец, то вектор обозначается символом или одной строчной буквой . На рисунке конец вектора указывается стрелкой (рис. 1)

Длиной (или модулем ) геометрического вектора называется длина порождающего его отрезка

Два вектора называются равными , если они могут быть совмещены (при совпадении направлений) путём параллельного переноса, т.е. если они параллельны, направлены в одну и ту же сторону и имеют равные длины.

В физике часто рассматриваются закреплённые векторы , заданные точкой приложения, длиной и направлением. Если точка приложения вектора не имеет значения, то его можно переносить, сохраняя длину и направление в любую точку пространства. В этом случае вектор называется свободным . Мы договоримся рассматривать только свободные векторы .

Линейные операции над геометрическими векторами

Умножение вектора на число

Произведением вектора на число называется вектор, получающийся из вектора растяжением (при ) или сжатием (при ) в раз, причём направление вектора сохраняется, если , и меняется на противоположное, если . (Рис. 2)

Из определения следует, что векторы и = всегда расположены на одной или на параллельных прямых. Такие векторы называются коллинеарными . (Можно говорить также, что эти векторы параллельны, однако в векторной алгебре принято говорить "коллинеарны".) Справедливо и обратное утверждение: если векторы и коллинеарны, то они связаны отношением

Следовательно, равенство (1) выражает условие коллинеарности двух векторов.


Сложение и вычитание векторов

При сложении векторов нужно знать, что суммой векторов и называется вектор , начало которого совпадает с началом вектора , а конец - с концом вектора , при условии, что начало вектора приложено к концу вектора . (Рис. 3)


Это определение может быть распределено на любое конечное число векторов. Пусть в пространстве даны n свободных векторов . При сложении нескольких векторов за их сумму принимают замыкающий вектор, начало которого совпадает с началом первого вектора, а конец - с концом последнего вектора. То есть, если к концу вектора приложить начало вектора , а к концу вектора - начало вектора и т.д. и, наконец, к концу вектора - начало вектора , то суммой этих векторов служит замыкающий вектор , начало которого совпадает с началом первого вектора , а конец - с концом последнего вектора . (Рис. 4)

Слагаемые называются составляющими вектора , а сформулированное правило - правилом многоугольника . Этот многоугольник может и не быть плоским.

При умножении вектора на число -1 получается противоположный вектор . Векторы и имеют одинаковые длины и противоположные направления. Их сумма даёт нулевой вектор , длина которого равна нулю. Направление нулевого вектора не определено.

В векторной алгебре нет необходимости рассматривать отдельно операцию вычитания: вычесть из вектора вектор означает прибавить к вектору противоположный вектор , т.е.

Пример 1. Упростить выражение:

.

,

то есть, векторы можно складывать и умножать на числа так же, как и многочлены (в частности, также задачи на упрощение выражений). Обычно необходимость упрощать линейно подобные выражения с векторами возникает перед вычислением произведений векторов.

Пример 2. Векторы и служат диагоналями параллелограмма ABCD (рис. 4а). Выразить через и векторы , , и , являющиеся сторонами этого параллелограмма.

Решение. Точка пересечения диагоналей параллелограмма делит каждую диагональ пополам. Длины требуемых в условии задачи векторов находим либо как половины сумм векторов, образующих с искомыми треугольник, либо как половины разностей (в зависимости от направления вектора, служащего диагональю), либо, как в последнем случае, половины суммы, взятой со знаком минус. Результат - требуемые в условии задачи векторы:

Есть все основания полагать, что теперь Вы правильно ответили на вопрос о векторах "Предприимчивость" и "Инновационные способности" в начале этого урока. Правильный ответ: над этими векторами производится операция сложения.

Решить задачи на векторы самостоятельно, а затем посмотреть решения

Как найти длину суммы векторов?

Эта задача занимает особое место в операциях с векторами, так как предполагает использование тригонометрических свойств. Допустим, Вам попалась задача вроде следующей:

Даны длины векторов и длина суммы этих векторов . Найти длину разности этих векторов .

Решения этой и других подобных задач и объяснения, как их решать - в уроке "Сложение векторов: длина суммы векторов и теорема косинусов ".

А проверить решение таких задач можно на Калькуляторе онлайн "Неизвестная сторона треугольника (сложение векторов и теорема косинусов)" .

А где произведения векторов?

Произведения вектора на вектор не являются линейными операциями и рассматриваются отдельно. И у нас есть уроки "Скалярное произведение векторов " и "Векторное и смешанное произведения векторов ".

Проекция вектора на ось

Проекция вектора на ось равна произведению длины проектируемого вектора на косинус угла между вектором и осью:

Как известно, проекцией точки A на прямую (плоскость) служит основание перпендикуляра , опущенного из этой точки на прямую (плоскость).


Пусть - произвольный вектор (Рис. 5), а и - проекции его начала (точки A ) и конца (точки B ) на ось l . (Для построения проекции точки A ) на прямую проводим через точку A плоскость, перпендикулярную прямой. Пересечение прямой и плоскости определит требуемую проекцию.

Составляющей вектора на оси l называется такой вектор , лежащий на этой оси, начало которого совпадает с проекцией начала, а конец - с проекцией конца вектора .

Проекцией вектора на ось l называется число

,

равное длине составляющего вектора на этой оси, взятое со знаком плюс, если направление составляюшей совпадает с направлением оси l , и со знаком минус, если эти направления противоположны.

Основные свойства проекций вектора на ось:

1. Проекции равных векторов на одну и ту же ось равны между собой.

2. При умножении вектора на число его проекция умножается на это же число.

3. Проекция суммы векторов на какую-либо ось равна сумме проекций на эту же ось слагаемых векторов.

4. Проекция вектора на ось равна произведению длины проектируемого вектора на косинус угла между вектором и осью:

.

Решение. Спроектируем векторы на ось l как определено в теоретической справке выше. Из рис.5а очевидно, что проекция суммы векторов равна сумме проекций векторов. Вычисляем эти проекции:

Находим окончательную проекцию суммы векторов:

Связь вектора с прямоугольной декартовой системой координат в пространстве

Знакомство с прямоугольной декартовой системой координат в пространстве состоялось в соответствующем уроке , желательно открыть его в новом окне.

В упорядоченной системе координатных осей 0xyz ось Ox называется осью абсцисс , ось 0y осью ординат , и ось 0z осью аппликат .


С произвольной точкой М пространства свяжем вектор

называемый радиус-вектором точки М и спроецируем его на каждую из координатных осей. Обозначим величины соответствующих проекций:

Числа x, y, z называются координатами точки М , соответственно абсциссой , ординатой и аппликатой , и записываются в виде упорядоченной точки чисел: M (x; y; z) (рис.6).

Вектор единичной длины, направление которого совпадает с направлением оси, называют единичным вектором (или ортом ) оси. Обозначим через

Соответственно орты координатных осей Ox , Oy , Oz

Теорема. Всякий вектор может быть разложен по ортам координатных осей:


(2)

Равенство (2) называется разложением вектора по координатным осям. Коэффициентами этого разложения являются проекции вектора на координатные оси. Таким образом, коэффициентами разложения (2) вектора по координатным осям являются координаты вектора.

После выбора в пространстве определённой системы координат вектор и тройка его координат однозначно определяют друг друга, поэтому вектор может быть записан в форме

Представления вектора в виде (2) и (3) тождественны.

Условие коллинеарности векторов в координатах

Как мы уже отмечали, векторы называются коллинеарными, если они связаны отношением

Пусть даны векторы . Эти векторы коллинеарны, если координаты векторов связаны отношением

,

то есть, координаты векторов пропорциональны.

Пример 6. Даны векторы . Коллинеарны ли эти векторы?

Решение. Выясним соотношение координат данных векторов:

.

Координаты векторов пропорциональны, следовательно, векторы коллинеарны, или, что то же самое, параллельны.

Длина вектора и направляющие косинусы

Вследствие взаимной перпендикулярности координатных осей длина вектора

равна длине диагонали прямоугольного параллелепипеда, построенного на векторах

и выражается равенством

(4)

Вектор полностью определяется заданием двух точек (начала и конца), поэтому координаты вектора можно выразить через координаты этих точек.

Пусть в заданной системе координат начало вектора находится в точке

а конец – в точке


Из равенства

Следует, что

или в координатной форме

Следовательно, координаты вектора равны разностям одноимённых координат конца и начала вектора . Формула (4) в этом случае примет вид

Направление вектора определяют направляющие косинусы . Это косинусы углов, которые вектор образует с осями Ox , Oy и Oz . Обозначим эти углы соответственно α , β и γ . Тогда косинусы этих углов можно найти по формулам

Направляющие косинусы вектора являются также координатами орта этого вектора и, таким образом, орт вектора

.

Учитывая, что длина орта вектора равна одной единице, то есть

,

получаем следующее равенство для направляющих косинусов:

Пример 7. Найти длину вектора x = (3; 0; 4).

Решение. Длина вектора равна

Пример 8. Даны точки:

Выяснить, равнобедренный ли треугольник, построенный на этих точках.

Решение. По формуле длины вектора (6) найдём длины сторон и установим, есть ли среди них две равные:

Две равные стороны нашлись, следовательно необходимость искать длину третьей стороны отпадает, а заданный треугольник является равнобедренным.

Пример 9. Найти длину вектора и его направляющие косинусы, если .

Решение. Координаты вектора даны:

.

Длина вектора равна квадратному корню из суммы квадратов координат вектора:

.

Находим направляющие косинусы:

Решить задачу на векторы самостоятельно, а затем посмотреть решение

Операции над векторами, заданными в координатной форме

Пусть даны два вектора и , заданные своими проекциями:

Укажем действия над этими векторами.

Вектор это направленный прямолинейный отрезок, то есть отрезок, имеющий определенную длину и определенное направление. Пусть точка А – начало вектора, а точка B – его конец, тогда вектор обозначается символом или . Вектор называется противоположным вектору и может быть обозначен .

Сформулируем ряд базовых определений.

Длиной или модулем вектора называется длина отрезка и обозначается . Вектор нулевой длины (его суть - точка) называется нулевым и направления не имеет. Вектор единичной длины, называется единичным . Единичный вектор, направление которого совпадает с направлением вектора , называется ортом вектора .

Векторы называются коллинеарными , если они лежат на одной прямой или на параллельных прямых, записывают . Коллинеарные векторы могут иметь совпадающие или противоположные направления. Нулевой вектор считают коллинеарным любому вектору.

Векторы называются равными , если они коллинеарны, одинаково направлены и имеют одинаковые длины.

Три вектора в пространстве называются компланарными , если они лежат в одной плоскости или на параллельных плоскостях. Если среди трех векторов хотя бы один нулевой или два любые коллинеарны, то такие векторы компланарны.

Рассмотрим в пространстве прямоугольную систему координат 0xyz . Выделим на осях координат 0x , 0y , 0z единичные векторы (орты) и обозначим их через соответственно. Выберем произвольный вектор пространства и совместим его начало с началом координат. Спроектируем вектор на координатные оси и обозначим проекции через a x , a y , a z соответственно. Тогда нетрудно показать, что

. (2.25)

Эта формула является основной в векторном исчислении и называется разложением вектора по ортам координатных осей . Числа a x , a y , a z называются координатами вектора . Таким образом, координаты вектора являются его проекциями на оси координат. Векторное равенство (2.25) часто записывают в виде

Мы будем использовать обозначение вектора в фигурных скобках, чтобы визуально легче различать координаты вектора и координаты точки. С использованием формулы длины отрезка, известной из школьной геометрии, можно найти выражение для вычисления модуля вектора :

, (2.26)

то есть модуль вектора равен корню квадратному из суммы квадратов его координат.

Обозначим углы между вектором и осями координат через α, β, γ соответственно. Косинусы этих углов называются для вектора направляющими , и для них выполняется соотношение: Верность данного равенства можно показать с помощью свойства проекции вектора на ось, которое будет рассмотрено в нижеследующем пункте 4.

Пусть в трехмерном пространстве заданы векторы своими координатами. Имеют место следующие операции над ними: линейные (сложение, вычитание, умножение на число и проектирование вектора на ось или другой вектор); не линейные – различные произведения векторов (скалярное, векторное, смешанное).

1. Сложение двух векторов производится покоординатно, то есть если

Данная формула имеет место для произвольного конечного числа слагаемых.

Геометрически два вектора складываются по двум правилам:

а) правило треугольника – результирующий вектор суммы двух векторов соединяет начало первого из них с концом второго при условии, что начало второго совпадает с концом первого вектора; для суммы векторов – результирующий вектор суммы соединяет начало первого из них с концом последнего вектора-слагаемого при условии, что начало последующего слагаемого совпадает с концом предыдущего;

б) правило параллелограмма (для двух векторов) – параллелограмм строится на векторах-слагаемых как на сторонах, приведенных к одному началу; диагональ параллелограмма исходящая из их общего начала, является суммой векторов.

2. Вычитание двух векторов производится покоординатно, аналогично сложению, то есть если , то

Геометрически два вектора складываются по уже упомянутому правилу параллелограмма с учетом того, что разностью векторов является диагональ, соединяющая концы векторов, причем результирующий вектор направлен из конца вычитаемого в конец уменьшаемого вектора.

Важным следствием вычитания векторов является тот факт, что если известны координаты начала и конца вектора, то для вычисления координат вектора необходимо из координат его конца вычесть координаты его начала . Действительно, любой вектор пространства может быть представлен в виде разности двух векторов, исходящих из начала координат: . Координаты векторов и совпадают с координатами точек А и В , так как начало координат О (0;0;0). Таким образом, по правилу вычитания векторов следует произвести вычитание координат точки А из координат точки В .

3. У множение вектора на число λ покоординатно: .

При λ> 0 – вектор сонаправлен ; λ< 0 – вектор противоположно направлен ; | λ|> 1 – длина вектора увеличивается в λ раз; | λ|< 1 – длина вектора уменьшается в λ раз.

4. Пусть в пространстве задана направленная прямая (ось l ), вектор задан координатами конца и начала. Обозначим проекции точек A и B на ось l соответственно через A и B .

Проекцией вектора на ось l называется длина вектора , взятая со знаком «+», если вектор и ось l сонаправлены, и со знаком «–», если и l противоположно направлены .

Если в качестве оси l взять некоторый другой вектор , то получим проекцию вектора на векто р .

Рассмотрим некоторые основные свойства проекций:

1)проекция вектора на ось l равна произведению модуля вектора на косинус угла между вектором и осью, то есть ;

2.)проекция вектора на ось положительна (отрицательна), если вектор образует с осью острый (тупой) угол, и равна нулю, если этот угол – прямой;

3)проекция суммы нескольких векторов на одну и ту же ось равна сумме проекций на эту ось.

Сформулируем определения и теоремы о произведениях векторов, представляющих нелинейные операции над векторами.

5. Скалярным произведением векторов и называется число (скаляр), равное произведению длин этих векторов на косинус угла φ между ними, то есть

. (2.27)

Очевидно, что скалярный квадрат любого ненулевого вектора равен квадрату его длины, так как в этом случае угол , поэтому его косинус (в 2.27) равен 1.

Теорема 2.2. Необходимым и достаточным условием перпендикулярности двух векторов является равенство нулю их скалярного произведения

Следствие. Попарные скалярные произведения единичных орт равны нулю, то есть

Теорема 2.3. Скалярное произведение двух векторов , заданных своими координатами, равно сумме произведений их одноименных координат, то есть

(2.28)

С помощью скалярного произведения векторов можно вычислить угол между ними. Если заданы два ненулевых вектора своими координатами , то косинус угла φ между ними:

(2.29)

Отсюда следует условие перпендикулярности ненулевых векторов и :

(2.30)

Нахождение проекции вектора на направление, заданное вектором , может осуществляться по формуле

(2.31)

С помощью скалярного произведения векторов находят работу постоянной силы на прямолинейном участке пути.

Предположим, что под действием постоянной силы материальная точка перемещается прямолинейно из положения А в положение B. Вектор силы образует угол φ с вектором перемещения (рис. 2.14). Физика утверждает, что работа силы при перемещении равна .

Следовательно, работа постоянной силы при прямолинейном перемещении точки ее приложения равна скалярному произведению вектора силы на вектор перемещения.

Пример 2.9. С помощью скалярного произведения векторов найти угол при вершине A параллелограмма ABCD , постро енного на векторах

Решение. Вычислим модули векторов и их скалярное произведение по теореме (2.3):

Отсюда согласно формуле (2.29) получим косинус искомого угла


Пример 2.10. Затраты сырьевых и материальных ресурсов, используемых на производство одной тонны творога, заданы в таблице 2.2 (руб.).

Какова общая цена этих ресурсов, затрачиваемых на изготовление одной тонны творога?

Таблица 2.2

Решение . Введем в рассмотрение два вектора: вектор затрат ресурсов на тонну продукции и вектор цены единицы соответствующего ресурса .

Тогда . Общая цена ресурсов , что представляет собой скалярное произведение векторов . Вычислим его по формуле (2.28) согласно теореме 2.3:

Таким образом, общая цена затрат на производство одной тонны творога составляет 279 541,5 рублей

Примечание . Действия с векторами, осуществленные в примере 2.10, можно выполнить на персональном компьютере. Для нахождения скалярного произведения векторов в MS Excel используют функцию СУММПРОИЗВ(), где в качестве аргументов указываются адреса диапазонов элементов матриц, сумму произведений которых необходимо найти. В MathCAD скалярное произведение двух векторов выполняется при помощи соответствующего оператора панели инструментов Matrix

Пример 2.11. Вычислить работу, произведенную силой , если точка ее приложения перемещается прямолинейно из положения A (2;4;6) в положение A (4;2;7). Под каким углом к AB направлена сила ?

Решение. Находим вектор перемещения, вычитая из координат его конца координаты начала

. По формуле (2.28) (единиц работы).

Угол φ между и находим по формуле (2.29), то есть

6. Три некомпланарных вектора , взятые в указанном порядке, образуют правую тройку , если при наблюдении из конца третьего вектора кратчайший поворот от первого вектора ко второму вектору совершается против часовой стрелки, и левую , если по часовой стрелке.

Векторным произведением вектора на вектор называется вектор , удовлетворяющий следующим условиям:

перпендикулярен векторам и ;

– имеет длину, равную , где φ – угол, образованный векторами и ;

– векторы образуют правую тройку (рис. 2.15).

Теорема 2.4. Необходимым и достаточным условием коллинеарности двух векторов является равенство нулю их векторного произведения

Теорема 2.5. Векторное произведение векторов , заданных своими координатами, равно определителю третьего порядка вида

(2.32)

Примечание. Определитель (2.25) раскладывается по свойству 7 определителей

Следствие 1. Необходимым и достаточным условием коллинеарности двух векторов является пропорциональность их соответствующих координат

Следствие 2. Векторные произведения единичных орт равны

Следствие 3. Векторный квадрат любого вектора равен нулю

Геометрическая интерпретация векторного произведения состоит в том, что длина результирующего вектора численно равна площади S параллелограмма, построенного на векторах–сомножителях как на сторонах, приведенных к одному началу. Действительно, согласно определению, модуль векторного произведения векторов равен . С другой стороны, площадь параллелограмма, построенного на векторах и , также равна . Следовательно,

. (2.33)


Также с помощью векторного произведения можно определить момент силы относительно точки и линейную скорость вращения.

Пусть в точке A приложена сила и пусть O – некоторая точка пространства (рис. 2.16). Из курса физики известно, что моментом силы относительно точки O называется вектор , который проходит через точку O и удовлетворяет следующим условиям:

Перпендикулярен плоскости, проходящей через точки O , A , B ;

Его модуль численно равен произведению силы на плечо .

- образует правую тройку с векторами и .

Следовательно, момент силы относительно точки O представляет собой векторное произведение

. (2.34)

Линейная скорость точки М твердого тела, вращающегося с угловой скоростью вокруг неподвижной оси, определяется формулой Эйлера , O – некоторая неподвижная

точка оси (рис. 2.17).


Пример 2.12. С помощью векторного произведения найти площадь треугольника ABC , построенного на векторах , приведенных к одному началу.

Векторы Вектором в пространстве называется направленный отрезок, т.е. отрезок, в котором указаны его начало и конец. Длиной, или модулем, вектора называется длина соответствующего отрезка. Длина векторов, обозначается соответственно,. Два вектора называются равными, если они имеют одинаковую длину и направление. Вектор с началом в точке А и концом в точке В обозначается и изображается стрелкой с началом в точке А и концом в точке В. Рассматривают также нулевые векторы, у которых начало совпадает с концом. Все нулевые векторы считаются равными между собой. Они обозначаются, и их длина считается равной нулю.


Сложение векторов Для векторов определена операция сложения. Для того чтобы сложить два вектора и, вектор откладывают так, чтобы его начало совпало с концом вектора. Вектор, у которого начало совпадает с началом вектора, а конец - с концом вектора, называется суммой векторов и, обозначается




Умножение вектора на число Произведение вектора на число t обозначается. По определению, Произведение вектора на число -1 называется вектором, противоположным и обозначается По определению, вектор имеет направление, противоположное вектору и Произведением вектора на число t называется вектор, длина которого равна, а направление остается прежним, если t > 0, и меняется на противоположное, если t 0, и меняется на противоположное, если t


Свойства Разностью векторов и называется вектор, который обозначается Для умножения вектора на число справедливы свойства, аналогичные свойствам умножения чисел, а именно: Свойство 1. (сочетательный закон). Свойство 2. (первый распределительный закон). Свойство 3. (второй распределительный закон).



























Стандартное определение: «Вектор - это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?

А в самом деле, что такое векторы и зачем они?
Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.

Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением - «сколько килограмм» или «сколько джоулей».

Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.

Скорость, сила, ускорение - векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения направлено к поверхности Земли, а величина его равна 9,8 м/с 2 . Импульс, напряженность электрического поля, индукция магнитного поля - тоже векторные величины.

Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:

Вот другой пример.
Автомобиль движется из A в B . Конечный результат - его перемещение из точки A в точку B , то есть перемещение на вектор .

Теперь понятно, почему вектор - это направленный отрезок. Обратите внимание, конец вектора - там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: или

До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы - новое понятие. Это другой класс математических объектов. Для них свои правила.

Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
Теперь мы знакомимся с векторами.

Понятия «больше» и «меньше» для векторов не существует - ведь направления их могут быть разными. Сравнивать можно только длины векторов.

А вот понятие равенства для векторов есть.
Равными называются векторы, имеющие одинаковые длины и одинаковое направление. Это значит, что вектор можно перенести параллельно себе в любую точку плоскости.
Единичным называется вектор, длина которого равна 1 . Нулевым - вектор, длина которого равна нулю, то есть его начало совпадает с концом.

Удобнее всего работать с векторами в прямоугольной системе координат - той самой, в которой рисуем графики функций. Каждой точке в системе координат соответствуют два числа - ее координаты по x и y , абсцисса и ордината.
Вектор также задается двумя координатами:

Здесь в скобках записаны координаты вектора - по x и по y .
Находятся они просто: координата конца вектора минус координата его начала.

Если координаты вектора заданы, его длина находится по формуле

Сложение векторов

Для сложения векторов есть два способа.

1 . Правило параллелограмма. Чтобы сложить векторы и , помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторов и .

Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.

2 . Второй способ сложения векторов - правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и .

По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.

Представьте, что вы идете из пункта А в пункт В , из В в С , из С в D , затем в Е и в F . Конечный результат этих действий - перемещение из А в F .

При сложении векторов и получаем:

Вычитание векторов

Вектор направлен противоположно вектору . Длины векторов и равны.

Теперь понятно, что такое вычитание векторов. Разность векторов и - это сумма вектора и вектора .

Умножение вектора на число

При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины . Он сонаправлен с вектором , если k больше нуля, и направлен противоположно , если k меньше нуля.

Скалярное произведение векторов

Векторы можно умножать не только на числа, но и друг на друга.

Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.

Обратите внимание - перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов - силы и перемещения:

Если векторы перпендикулярны, их скалярное произведение равно нулю.
А вот так скалярное произведение выражается через координаты векторов и :

Из формулы для скалярного произведения можно найти угол между векторами:

Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто задача 14 решается в несколько раз быстрее, чем классическим.

В школьной программе по математике изучают только скалярное произведение векторов.
Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике , знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.

Векторы - полезнейший математический инструмент. В этом вы убедитесь на первом курсе.

В статье пойдет речь о том, что такое вектор, что он из себя представляет в геометрическом смысле, введем вытекающие понятия.

Для начала дадим определение:

Определение 1

Вектор – это направленный отрезок прямой.

Исходя из определения, под вектором в геометрии отрезок на плоскости или в пространстве, который имеет направление, и это направление задается началом и концом.

В математике для обозначения вектора обычно используют строчные латинские буквы, однако над вектором всегда ставится небольшая стрелочка, например a → . Если известны граничные точки вектора – его начало и конец, к примеру A и B , то вектор обозначается так A B → .

Определение 2

Под нулевым вектором 0 → будем понимать любую точку плоскости или пространства.

Из определения становится очевидным, что нулевой вектор может иметь любое направление на плоскости и в пространстве.

Длина вектора

Определение 3

Под длиной вектора A B → понимается число, большее либо равное 0, и равное длине отрезка АВ.

Длину вектора A B → принято обозначать так A B → .

Понятия модуль вектора и длина вектора равносильны, потому что его обозначение совпадает со знаком модуля. Поэтому длину вектора также называют его модулем. Однако грамотнее использовать термин "длина вектора". Очевидно, что длина нулевого вектора принимает значение ноль.

Коллинеарность векторов

Определение 4

Два вектора лежащие на одной прямой или на параллельных прямых называются коллинеарными .

Определение 5

Два вектора не лежащие на одной прямой или на параллельных прямых называются неколлинеарными .

Следует запомнить, что Нулевой вектор всегда коллинеарен любому другому вектору, так как он может принимать любое направление.

Коллиниарные векторы в свою очередь тоже можно разделить на два класса: сонаправленные и противоположно направленные.

Определение 6

Сонаправленными векторами называют два коллинеарных вектора a → и b → , у которых направления совпадают, такие векторы обозначаются так a → b → .

Определение 7

Противоположно направленными векторами называются два коллинеарных вектора a → и b → , у которых направления не совпадают, т.е. являются противоположными, такие векторы обозначаются следующим образом a → ↓ b → .

Считается, что нулевой вектор является сонаправленым к любым другим векторам.

Определение 8

Равными называются сонаправленные вектора, у которых длины равны.

Определение 9

Противопожными называются противоположно направленные вектора, у которых их длины равны.

Введенные выше понятия позволяют нам рассматривать векторы без привязки к конкретным точкам. Иначе говоря, можно заменить вектор равным ему вектором, отложенным от любой точки.

Пусть заданы два произвольных вектора на плоскости или в пространстве a → и b → . Отложим от некоторой точки O плоскости или пространства векторы O A → = a → и O B → = b → . Лучи OA и OB образуют угол ∠ A O B = φ .

Определение 9

Угол φ = ∠ A O B называется углом между векторами a → = O A → и b → = O B → .

Очевидно, что угол между сонаправленными векторами равен нулю градусам (или нулю радиан), так как сонаправленные векторы лежат на одной или на параллельных прямых и имеют одинаковое направление, а угол между противоположно направленными векторами равен 180 градусам (или π радиан), так как противоположно направленные векторы лежат на одной или на параллельных прямых, но имеют противоположные направления.

Определение 10

Перпендикулярными называются два вектора, угол между которыми равен 90 градусам (или π 2 радиан).

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Читайте также: